关闭
当前搜索:

语义分割深度学习方法集锦

转载:https://github.com/handong1587/handong1587.github.io/edit/master/_posts/deep_learning/2015-10-09-segmentation.mdPapersDeep Joint Task Learning for Generic Object Extraction intro: NIPS 2014 homepage...
阅读(48) 评论(0)

deeplab运行指南

以下仅仅为一个总结,参考了网上的众多资料,仅备忘记。主要链接 deeplab主页:http://liangchiehchen.com/projects/DeepLab.html 官方代码:https://bitbucket.org/aquariusjay/deeplab-public-ver2 python 版caffe实现:https://github.com/TheLegendAli/DeepL...
阅读(292) 评论(0)

关于FCN的数据集着色说明

前方我们讲解了《 FCN-数据篇》。里面包含了如何制作类似pascal voc的label。很大篇幅在谈如何着色,如何转化为索引图像。 由于一些内容参考网上的资料,所以对里面的一些操作含义也有些糊涂。 其实网上的东西也不都对,很多人云亦云。所以需要我们仔细甄别。 其中我就发现了一个错误。我们来从头谈起。 pascal voc数据集 当我们从网上下载pascal voc2012的数据集,会发现S...
阅读(173) 评论(0)

FCN-加载训练与测试数据

当我们生成了数据后,我们来看看FCN是如何加载数据的。FCN 代码预览其中: - data : 训练测试数据 - ilsvrc-nets:存放预训练的模型 - 剩下的框:不同数据集的训练测试prototxt - voc_layers,siftflow_layers等:数据生成层 - snapshot:保存快照(若没有自建)加载训练测试数据我们从solve.py看起。 在这里郑重...
阅读(121) 评论(0)

FCN-数据篇

从本篇开始,我们来记录一下全卷积网络用来做语义分割的全过程。 代码:https://github.com/shelhamer/fcn.berkeleyvision.org 下面我们将描述三方面的内容: 1. 官方提供的公开数据集 2. 自己的数据集如何准备,主要是如何标注label 3. 训练结束后如何对结果着色。公开数据集这里分别说一下SiftFlowDataset与pascal voc数...
阅读(294) 评论(0)

Mask RCNN笔记

mask rcnn简介mask rcnn是何凯明基于以往的faster rcnn架构提出的新的卷积网络,一举完成了object instance segmentation. 该方法在有效地目标的同时完成了高质量的语义分割。 文章的主要思路就是把原有的Faster-RCNN进行扩展,添加一个分支使用现有的检测对目标进行并行预测。同时,这个网络结构比较容易实现和训练,速度5fps也算比较快点,可以很方便...
阅读(596) 评论(0)

Feature Pyramid Networks for Object Detection 总结

最近在阅读FPN for object detection,看了网上的很多资料,有些认识是有问题的,当然有些很有价值。下面我自己总结了一下,以供参考。 1. FPN解决了什么问题?答: 在以往的faster rcnn进行目标检测时,无论是rpn还是fast rcnn,roi 都作用在最后一层,这在大目标的检测没有问题,但是对于小目标的检测就有些问题。因为对于小目标来说,当进行卷积池化到最后一层,实际...
阅读(188) 评论(1)

faster rcnn end2end 训练与测试

除了前面讲过的rpn与fast rcnn交替训练外,faster rcnn还提供了一种近乎联合的训练,姑且称为end2end训练。 根据论文所讲,end2end的训练一气呵成,对于前向传播,rpn可以作为预设的网络提供proposal.而在后向传播中,rpn,与fast rcnn分别传导,而汇聚到shared layer.,但是没有考虑掉roi pooling层对于predicted bound...
阅读(245) 评论(0)

faster rcnn的测试

当训练结束后,faster rcnn的模型保存在在py-faster-rcnn/output目录下,这时就可以用已有的模型对新的数据进行测试。 下面简要说一下测试流程。 测试的主要代码是./tools/test_net.py,并且使用到了fast_rcnn中test.py。   主要流程就是: 1. 读取imdb,主要就是测试数据的位置等信息。 2.   然后循环读取图片...
阅读(144) 评论(0)

faster rcnn在自己的数据集上训练

本文是一个总结,参考了网上的众多资料,汇集而成,以供自己后续参考。 一般说来,训练自己的数据,有两种方法:第一种就是将自己的数据集完全改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,然后相应地改变相应模型的参数,比如种类等。 data目录下存放的数据如下: VOCdevkit2007 └── VOC2007 ├── Annotations │...
阅读(140) 评论(0)

faster rcnn学习之rpn 的生成

接着上一节《 faster rcnn学习之rpn训练全过程》,假定我们已经训好了rpn网络,下面我们看看如何利用训练好的rpn网络生成proposal. 其网络为rpn_test.pt # Enter your network definition here. # Use Shift+Enter to update the visualization. name: "VGG_CNN_M_102...
阅读(196) 评论(1)

faster rcnn学习之rpn训练全过程

上篇我们讲解了rpn与fast rcnn的数据准备阶段,接下来我们讲解rpn的整个训练过程。最后 讲解rpn训练完毕后rpn的生成。 我们顺着stage1_rpn_train.pt的内容讲解。 name: "VGG_CNN_M_1024" layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info'...
阅读(335) 评论(0)

faster rcnn学习之rpn、fast rcnn数据准备说明

在上文《 faster-rcnn系列学习之准备数据》,我们已经介绍了imdb与roidb的一些情况,下面我们准备再继续说一下rpn阶段和fast rcnn阶段的数据准备整个处理流程。 由于这两个阶段的数据准备有些重合,所以放在一起说明。 我们并行地从train_rpn与train_fast_rcnn说起,这两个函数在train_faster_rcnn_alt_opt.py中。 def tra...
阅读(197) 评论(0)

Faster RCNN minibatch.py解读

minibatch.py 的功能是: Compute minibatch blobs for training a Fast R-CNN network. 与roidb不同的是, minibatch中存储的并不是完整的整张图像图像,而是从图像经过转换后得到的四维blob以及从图像中截取的proposals,以及与之对应的labels等在整个faster rcnn训练中,有两处用到了minibatch...
阅读(220) 评论(0)

py-faster-rcnn代码roidb.py的解读

roidb是比较复杂的数据结构,存放了数据集的roi信息。原始的roidb来自数据集,在trian.py的get_training_roidb(imdb)函数进行了水平翻转扩充数量,然后prepare_roidb(imdb)【定义在roidb.py】为roidb添加了一些说明性的属性。 在这里暂时记录下roidb的结构信息,后面继续看的时候可能会有些修正: roidb是由字典组成的li...
阅读(136) 评论(0)
20条 共2页1 2 下一页 尾页
    个人资料
    • 访问:284567次
    • 积分:4122
    • 等级:
    • 排名:第8671名
    • 原创:117篇
    • 转载:82篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论