关闭

Iris recognition papers in the top journals in 2017

93人阅读 评论(0) 收藏 举报
分类:

转载自:https://kiennguyenstuff.wordpress.com/2017/10/05/iris-recognition-papers-in-the-top-journals-in-2017/


Top journals:

– IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)

– Pattern Recognition (PR)

– IEEE Transaction on Image Processing

– IEEE Transaction on Forensics and Security

– Pattern Recognition Letters (PRL)

– Computer Vision and Image Understanding (CVIU)

———————————————————————————————————–

2017 – Journals

1. Cancellable iris template generation based on Indexing-First-One hashing

Lai, Yen-Lung ; Jin, Zhe; Jin Teoh, Andrew Beng; Goi, Bok-Min; Yap, Wun-She; Chai, Tong-Yuen; Rathgeb, Christian Source: Pattern Recognition, v 64, p 105-117, April 1, 2017

2. Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification

Raja, Kiran B. ; Raghavendra, R.; Venkatesh, Sushma; Busch, Christoph Source:Pattern Recognition Letters, v 91, p 27-36, May 1, 2017

3. Results from MICHE II – Mobile Iris CHallenge Evaluation II

De Marsico, Maria ; Nappi, Michele; Proença, Hugo Source: Pattern Recognition Letters, v 91, p 3-10, May 1, 2017

4. Iris matching by means of Machine Learning paradigms: A new approach to dissimilarity computation

Aginako, Naiara; Echegaray, Goretti; Martínez-Otzeta, J.M.; Rodríguez, Igor; Lazkano, Elena; Sierra, Basilio Source: Pattern Recognition Letters, v 91, p 60-64, May 1, 2017

5. Optimal Generation of Iris Codes for Iris Recognition

Hu, Yang ; Sirlantzis, Konstantinos; Howells, Gareth Source: IEEE Transactions on Information Forensics and Security, v 12, n 1, p 157-171, January 2017

6. FIRE: Fast Iris REcognition on mobile phones by combining colour and texture features

Galdi, Chiara; Dugelay, Jean-Luc Source: Pattern Recognition Letters, v 91, p 44-51, May 1, 2017

7. Periocular and iris local descriptors for identity verification in mobile applications

Aginako, Naiara; Castrillón-Santana, Modesto; Lorenzo-Navarro, Javier; Martínez-Otzeta, José María; Sierra, Basilio Source: Pattern Recognition Letters, v 91, p 52-59, May 1, 2017

8. Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices

Abate, Andrea F.; Barra, Silvio; Gallo, Luigi; Narducci, Fabio Source: Pattern Recognition Letters, v 91, p 37-43, May 1, 2017

9. Toward more accurate iris recognition using cross-spectral matching

Nalla, Pattabhi Ramaiah; Kumar, Ajay Source: IEEE Transactions on Image Processing, v 26, n 1, p 208-221, January 2017

10. Combining iris and periocular biometric for matching visible spectrum eye images

Ahmed, Nasir Udin; Cvetkovic, Slobodan; Siddiqi, Erfanul Hoque; Nikiforov, Andrey; Nikiforov, Ilia Source: Pattern Recognition Letters, v 91, p 11-16, May 1, 2017

11. “Mobile Iris CHallenge Evaluation part II (MICHE II)”

De Marsico, Maria; Nappi, Michele; Proença, Hugo Source: Pattern Recognition Letters, v 91, p 1-2, May 1, 2017

12. Certain investigation on iris image recognition using hybrid approach of Fourier transform and Bernstein polynomials

Ramya, M.; Krishnaveni, V.; Sridharan, K.S. Source: Pattern Recognition Letters, v 94, p 154-162, July 15, 2017

13. A deep learning approach for iris sensor model identification

Marra, Francesco; Poggi, Giovanni; Sansone, Carlo; Verdoliva, Luisa Source: Pattern Recognition Letters, December 23, 2016 Article in Press

14. Long range iris recognition: A survey

Nguyen, Kien; Fookes, Clinton; Jillela, Raghavender; Sridharan, Sridha; Ross, Arun Source: Pattern Recognition, v 72, p 123-143, December 2017

15. Recognition of Image-Orientation-Based Iris Spoofing

Czajka, Adam; Bowyer, Kevin W.; Krumdick, Michael; Vidalmata, Rosaura G. Source:IEEE Transactions on Information Forensics and Security, v 12, n 9, p 2184-2196, September 2017

16. A code-level approach to heterogeneous iris recognition

Liu, Nianfeng; Liu, Jing; Sun, Zhenan; Tan, Tieniu Source: IEEE Transactions on Information Forensics and Security, v 12, n 10, p 2373-2386, October 2017

 


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

2017 NIPS 哪家强?我们统计了大会发文数量,谷歌和CMU稳居老大

作者:Robbie Allen 编译:HAPPEN、林海、Niki、Aileen    第31届神经信息处理系统大会(NIPS)上周在加州长滩(Long Beach)举行。NIPS可以说是AI领...
  • dzJx2EOtaA24Adr
  • dzJx2EOtaA24Adr
  • 2017-12-12 00:00
  • 211

开源|2017 CVPR(Oral Paper):多目标实时体态估测 项目开源

本目录下的代码赢得了2016年MSCOCO关键点挑战赛以及2016年ECCV最佳演示奖,并发表在2017年CVPR的口头论文(Oral Paper)中。   演示视频:      在...
  • AMDS123
  • AMDS123
  • 2017-03-22 12:43
  • 8091

多模态语音识别近期相关文献

多模态语音识别近期相关文献
  • u014437511
  • u014437511
  • 2017-05-19 16:06
  • 381

最新十大web安全隐患-四年之后_OWASP发布新版本OWASP Top10 2017

OWASP Top10是什么?      OWASP项目最具权威的就是其”十大安全漏洞列表”。这个列表总结了Web应用程序最可能、最常见、最危险的十大漏洞,可以帮助IT公司和开发团队规范应用...
  • nicenelly
  • nicenelly
  • 2017-11-23 14:06
  • 435

2017年12月全球数据库排名:SQL Server 跌势明显,刚获阿里投资的MariaDB表现良好

程序猿(微信号:imkuqin) 猿妹 编译 来源:https://db-engines.com/en/ranking_trend DB-Engines 发布了 2017 年 ...
  • UzV80PX5V412NE
  • UzV80PX5V412NE
  • 2017-12-07 00:00
  • 452

转:iris数据集及简介

一.iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson’s Iris data set。iris包含150个样本,对应数据集的每行数据。每行数据包含每个样本...
  • java1573
  • java1573
  • 2017-12-21 17:04
  • 81

用数据可视化直观理解数据--iris数据集为例

原文:https://www.kaggle.com/benhamner/d/uciml/iris/python-data-visualizations See Kaggle Datasets for...
  • u013527419
  • u013527419
  • 2017-04-07 15:43
  • 1153

IRIS数据采用Kmeans方法的C++实现

IRIS数据采用Kmeans方法的C++实现 参考:http://blog.csdn.net/cai0538/article/details/7061922 #include #inclu...
  • chenchunyue11
  • chenchunyue11
  • 2016-05-24 22:29
  • 628

九度OJ 1036 Old Bill (模拟)

题目1036:Old Bill 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2302 解决:1211 题目描述:     Amo...
  • wdkirchhoff
  • wdkirchhoff
  • 2014-12-13 14:25
  • 1014

用深度神经网络对Iris数据集进行分类的程序--tensorflow

先确保你已经安装了tensorflow…# 引入必要的module from __future__ import absolute_import from __future__ import divi...
  • youyuyixiu
  • youyuyixiu
  • 2017-05-08 15:58
  • 1692
    个人资料
    • 访问:285095次
    • 积分:4126
    • 等级:
    • 排名:第8660名
    • 原创:117篇
    • 转载:82篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论