关闭

faster rcnn end2end 训练与测试

246人阅读 评论(0) 收藏 举报
分类:

除了前面讲过的rpn与fast rcnn交替训练外,faster rcnn还提供了一种近乎联合的训练,姑且称为end2end训练。

根据论文所讲,end2end的训练一气呵成,对于前向传播,rpn可以作为预设的网络提供proposal.而在后向传播中,rpn,与fast rcnn分别传导,而汇聚到shared layer.,但是没有考虑掉roi pooling层对于predicted bounding box的导数。如下图:



我们这里截取Ross'Girshick 在ICCV15上的ppt<Training'R-CNNs'  of  'various  'velocities   Slow, fast, and faster>  



对于roi pooling层,显然依赖于图像本身,和roi区域。对于fast rcnn来讲,roi是固定的,而对于faster rcnn来说,roi是通过rpn产生的,rpn不定,所以roi的生成依赖于

图像。



但是由于最大池化的作用,所以没有办法对roi的四个位置求导。




所以忽略掉对于roi的导数,当然了如果改变max pooling的方式,比如如下所说采取双线性插值,这样输出既有roi的坐标也有图像像素值,则可以关于roi求导。





根据github上py-faster-rcnn描述

  • For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, ...) with at least 3G of memory suffices
  • For training Fast R-CNN with VGG16, you'll need a K40 (~11G of memory)
  • For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)

使用end2end的训练方式,显存也减少了,从原先的11g减少到3g.我觉得主要的原因是在原先的交替训练中,rpn训练结束后,会有一个rpn生成的过程,这时会生成所有训练图片的proposals,而这是个巨大的负担。而使用end2end的方式训练,一次训练一张图片,rpn阶段产生一张图片的proposal,然后送入fast rcnn训练。显然这种方法很省时也很省内存。


对于end2end的测试,从网络配置上基本与交替训练的相同。在一些小的细节,比如end2end测试时仍然保留了drop层,而对于交替训练的方式,在训练阶段有,测试时去掉了。

下面给出了个人画的end2end的训练网络图。

请访问:链接


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

使用faster rcnn训练自己的数据(py-faster-rcnn )

使用RGB大神的py-faster-rcnn训练自己的数据进行目标检测
  • hgd1010101
  • hgd1010101
  • 2016-04-13 09:34
  • 11144

Caffe学习系列——Faster-RCNN训练自己的数据集

2016-10-23 Deep Learning►Caffe Caffe学习系列——6使用Faster-RCNN进行目标检测 Contents 1. 配置与运行De...
  • CV_adventurer
  • CV_adventurer
  • 2017-05-29 23:38
  • 4103

Faster rcnn 安装、训练、测试、调试

Faster rcnn 安装、训练自己的数据、测试、调参
  • lilai619
  • lilai619
  • 2016-11-07 20:58
  • 4174

py-faster-rcnn训练脚本faster_rcnn_end2end.sh分析

py-faster-rcnn训练脚本faster_rcnn_end2end.sh分析
  • zchang81
  • zchang81
  • 2017-06-13 17:35
  • 1510

faster_rcnn_end2end.sh源码分析

#!/bin/bash # Usage: # ./experiments/scripts/faster_rcnn_end2end.sh GPU NET DATASET [options args to...
  • qq_31275519
  • qq_31275519
  • 2017-04-27 09:26
  • 398

faster rcnn end-to-end loss曲线的绘制

  • 2017-11-15 17:10
  • 3KB
  • 下载

深度学习Caffe实战笔记(21)Windows平台 Faster-RCNN 训练好的模型测试数据

前一篇博客介绍了如何利用Faster-RCNN训练自己的数据集,训练好会得到一个模型,这篇博客介绍如何利用训练好的模型进行测试数据。1、训练好的模型存放位置 训练好的模型存放在faster_rcnn...
  • gybheroin
  • gybheroin
  • 2017-05-21 19:32
  • 1438

Faster rcnn 安装、训练、测试、调试

Faster rcnn 安装、训练自己的数据、测试、调参
  • lilai619
  • lilai619
  • 2016-11-07 20:58
  • 4174

分配训练和测试数据集(python)——Faster-RCNN

读取文件列表,随机选取文件存入txt文件
  • Suii_v5
  • Suii_v5
  • 2017-07-09 09:37
  • 348

py-faster-rcnn配置运行faster_rcnn_end2end—VGG_CNN_M_1024(Ubuntu14.04)

在我的上个博客中已经对py-faster-rcnn配置运行demo.py做出了相应说明,在本博客中我将对py-faster-rcnn配置运行faster_rcnn_end2end—VGG_CNN_M_...
  • samylee
  • samylee
  • 2016-04-08 20:48
  • 10823
    个人资料
    • 访问:285088次
    • 积分:4126
    • 等级:
    • 排名:第8660名
    • 原创:117篇
    • 转载:82篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论