- 博客(12)
- 资源 (10)
- 问答 (1)
- 收藏
- 关注
原创 dlib人脸检测功能介绍
本文主要介绍三个点: 1. 如何单独建立一个工程,使用dlib的人脸检测功能。 2. 提高人脸检测率的两个方法 3. 加速人脸检测的方法 下面围绕这几个点展开叙述。建人脸检测工程1 . 首先我们先使用上期说的examples里的人脸检测。 我们只要将face_detection_ex设为启动项,即可运行。效果如下: 2. 建立单独的工程。像其他正常的方法,建立一般的工程。然后 在
2016-03-24 09:02:46
25323
原创 superviseddescent (SDM C++11实现)环境配置
今天试着用了一下SDM的C++11实现,本来以为挺简单的,可是配置环境还是花了一些时间。为了给自己留下一些记忆,特把配置过程记录下来。这个实现是C++11的版本,是一个通用版本,里面包含了很多的功能,比如函数的最优化,人脸对齐,头部姿势估计,而且代码使用了现代C++的编写风格,含有了boost的一些语法,非常新颖,适合学习。下面列出具体的配置:依赖的工具依赖的工具:Opencv(>=2.4.3以上)
2016-03-22 20:41:44
3673
翻译 Facial Landmark Detection(人脸特征点检测)
dlib :https://github.com/davisking/dlib/tree/v18.18 评价:速度快,可商用,有些时候不太准确 2. CLM-framework: https://github.com/TadasBaltrusaitis/CLM-framework 评价:很准确,不可商用 3. Face Detection, Pose Estim
2016-03-16 20:35:37
63103
4
原创 最新的一些开源face alignment及评价
dlib :https://github.com/davisking/dlib/tree/v18.18 评价:速度快,可商用,有些时候不太准确 2. CLM-framework: https://github.com/TadasBaltrusaitis/CLM-framework 评价:很准确,不可商用 3. Face Detection, Pose Estim
2016-03-16 20:34:40
8447
原创 ubuntu 15.10下cmake 的安装
因为原先ubuntu自带的cmake有点旧,就想着安装个最新的,可是直接安装卡在了某一步上,后面有说明。现将正确的安装方法列出来。1.卸载原有的版本sudo apt-get autoremove cmake2. 下载最新的cmake :https://cmake.org/download/3. 解压:tar -xzvf cmake.tgz 进入解压的文件; cd cmake
2016-03-12 22:03:26
2507
原创 ubuntu15.10下安装opencv2.4.9&python上调用opencv库
opencv版本选择前几天花了一天时间整ubuntu下的opencv安装,可是总是出现各种各样的问题。在网上查资料,可是都是碎片化的资料,加之自己英文不是很好,有时候不是很清楚有些人的解决方法,于是就只能各种尝试。原先想装opencv3.1.0,可是总是装不成功,经常卡在cmake处就中断了。后来想想自己在windows下装的也是opencv2.4.9,就想是不是版本的问题呢?于是换成2.4.9,几
2016-03-12 22:01:13
3206
原创 face alignment by 3000 fps系列学习总结
我们主要讲一讲Github上给出的matlab开源代码《jwyang/face-alignment》的配置。 首先声明:本人第一次配置的时候也是参考了csdn一个作者和github给出的说明配置成功的。其实后来想想很简单的,但是可能对于初学者,还是有一定的困难。为此,本人将自己的一些心得列出来,以供参考。 另外,本人对代码做了详尽的注释,代码下载地址:http://pan.baidu.com/s
2016-03-10 23:40:12
4380
4
原创 face alignment by 3000 fps系列学习总结(三)
训练我们主要以3000fps matlab实现为叙述主体。总体目标 我们需要为68个特征点的每一个特征点训练5棵随机树,每棵树4层深,即为所谓的随机森林。 开始训练分配样本 事实上,对于每个特征点,要训练随机森林,我们需要从现有的样本和特征中抽取一部分,训练成若干个树。 现在,我们有N(此处N=1622)个样本(图片和shape)和无数个像素差特征。训练时,对于每棵树,我们从N
2016-03-08 21:21:32
4534
2
原创 face alignment by 3000 fps系列学习总结(二)
准备初始数据mean_shapemean_shape就是训练图片所有ground_truth points的平均值.那么具体怎么做呢?是不是直接将特征点相加求平均值呢? 显然这样做是仓促和不准确的。因为图片之间人脸是各式各样的,收到光照、姿势等各方面的影响。因此我们求取平均值,应该在一个相对统一的框架下求取。如下先给出matlab代码:function mean_shape = calc_mean
2016-03-07 22:42:11
4285
1
原创 Face Alignment by 3000 FPS系列学习总结(一)
face alignment 流程图train阶段测试阶段预处理裁剪图片tr_data = loadsamples(imgpathlistfile, 2); 说明: 本函数用于将原始图片取ground-truth points的包围盒,然后将其向左上角放大一倍。然后截取此部分图像,同时变换ground-truth points.hou,然后为了节省内存,使用了缩放,将其缩放在150*150的大小
2016-03-07 21:14:19
5535
原创 matlab内置函数fitgeotrans与transformPointsForward解析
最近研究3000fps的实现,看了网上给的一个matlab代码,里面有提到init_shape到mean_shape的对齐,里面使用了fitgeotrans和transformPointsForward两个函数。于是参考matlab help研究了一下这两个函数.fitgeotrans函数语法: tform = fitgeotrans(movingPoints,fixedPoints,transfo
2016-03-05 18:54:01
18485
test_demo.zip
2019-08-06
matlab_caffe_cpu_vs2015_matlab_2016_py35.zip
2019-06-23
doxygen安装工具
2015-11-08
2.46公式推导有误,应该改为
2014-12-29
TA创建的收藏夹 TA关注的收藏夹
TA关注的人