关闭
当前搜索:

雅可比旋转求解对称二维矩阵的特征值和特征向量

问题描述:给定一个矩阵,如下: A=[a11a21a12a22] A=\begin{bmatrix} a_{11}&a_{12}\\ a_{21}& a_{22} \end{bmatrix} 其中满足a12=a21a_{12}=a_{21}.也就是所谓的对称矩阵。那么如何求解此矩阵的特征值以及特征向量呢?这里我们要用到雅克比旋转。雅克比旋转Jacobi方法是求对称矩阵的全部特征值以及相应的...
阅读(1263) 评论(2)

MATLAB中floor、round、ceil、fix区别

Matlab取整函数有: fix, floor, ceil, round.具体应用方法如下: fix朝零方向取整,如fix(-1.3)=-1; fix(1.3)=1; floor,顾名思义,就是地板,所以是取比它小的整数,即朝负无穷方向取整,如floor(-1.3)=-2; floor(1.3)=1;floor(-1.8)=-2,floor(1.8)=1 ceil,与floor相反,它的意思...
阅读(5369) 评论(0)

halcon相关的链接

论坛、培训 halcon学习网:http://www.ihalcon.com/ 鸟叔机器视觉:http://bbs.szvbt.com/forum.php 博客 韩兆新的博客园 majunfu Life and Coding zhaojun的博客 風韻無聲 骑蚂蚁上高速的博客 小马_xiaoLV2 小新识图 程序园-程序员的世界 章柯渊的博客 注:介绍了halcon与MFC混合编程! 新浪博客搜...
阅读(1067) 评论(0)

很有用的cv牛人的网址和主要贡献

CV人物1:Jianbo Shi史建波毕业于UC Berkeley,导师是Jitendra Malik。其最有影响力的研究成果:图像分割。其于2000年在PAMI上多人合作发表"Noramlized cuts and image segmentation"。这是图像分割领域内最经典的算法。主页:www.cis.upenn.edu/~jshi/ 和 www.cs.cmu.edu/~jshi/ ...
阅读(666) 评论(0)

基于HALCON的模板匹配方法总结

很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间。去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇《基于HDevelop的形状匹配算法参数的优化研究》文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需...
阅读(1384) 评论(0)

halcon模板匹配学习(二) 准备模板

如下,我们将介绍匹配的第一个操作:准备模板初始时刻,我们准备好参考图像,并对其做一定的处理,然后我们需要从参考图像中导出模板,也就是将参考图像裁剪成所谓的模板图像。获取模板图像可以通过设置ROI来完成。对于某些应用来说,也可以使用综合模板代替模版图像。综合模板既可以是综合创造的模板图像,也可以是一个XLD轮廓。裁剪参考图像,使之成为模板图像为了创建模板图像,我们需要从参考图像中选取ROI,并使用 r...
阅读(4483) 评论(0)

halcon模板匹配学习(一) Matching 初印象

什么是模板匹配呢?简单而言,就是在图像中寻找目标图像(模板),或者说,就是在图像中寻找与模板图像相似部分的一种图像处理技术。依赖于选择的方法不同,模板匹配可以处理各种情形下的变换,如照明、杂点、大小、位置以及旋转,甚至模版内部的相对移动。模版匹配的鲁棒性和灵活性都很高,而且很多参数可以自适应生成,只有极少的参数需要配置。在Halcon中,提供了各种不同的匹配方法。不同方法的选择依赖于图像数据以及要解...
阅读(4133) 评论(0)

灰度图像的8位平面分解

所谓灰度图像,即指8位256颜色的图像。将图像的每一位分别取出来,我们就可以将一幅图像分解开来,形成8幅图像。下面我们分别介绍使用matlab分解图像与使用halcon/c++分解图像的方法。 matlab8位分解 clc; clear all; A = imread('lena.tif'); % 显示原始图像 subplot(3,3,1); imshow(A);title('原始图像');...
阅读(3618) 评论(1)
    个人资料
    • 访问:284572次
    • 积分:4122
    • 等级:
    • 排名:第8671名
    • 原创:117篇
    • 转载:82篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论