一. 图模型(graphical model, GM)的表示

图模型是用图表示概率分布的技术,分为有向图模型(贝叶斯网络)和无向图模型(马尔可夫网络)。通过图模型,复杂的概率分布可简化为因子乘积,便于推断和学习。有向图模型使用条件概率表,无向图模型使用势能函数来表示。图的结构和参数是关键,参数学习和结构学习是后续研究的重点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图模型(graphical model)是一类用图来表示概率分布的一类技术的总称。

它的主要优点是把概率分布中的条件独立用图的形式表达出来,从而可以把一个概率分布(特定的,和应用相关的)表示为很多因子的乘积,从而简化在边缘化一个概率分布的计算,这里的边缘化指的是给定n个变量的概率分布,求取其中m个变量的概率分布的计算(m<n)。

图模型主要有两大类,一类是贝叶斯网络(又称有向图模型);另外一类是马尔可夫网络(又称无向图模型)。

谈到一个图模型,主要有三个主要的关注点:

1)图模型的表示(representation); 指的是一个图模型应该是什么样子的

2)图模型的推断(inference); 指的是已知图模型的情况下,怎么去计算一个查询的概率,例如已经一些观察节点,去求其它未知节点的概率

3)图模型的学习(learning); 这里又分为两类,一类是图的结构学习;一类是图的参数学习。

 

在本文,我们主要关注图模型的表示,在以后的文章中,我们会论述图模型的其它方面。

一. 有向图模型的表示

    顾名思义,有向图模型的结构表示是有向图的形式;通过一个有向图来表示一个概率分布,从而可以利用这个有向图模型来进行推断。

对于有向图模型,一个关键就是怎么通过一个有向图来表示一个概率分布呢?

对于一个概率分布p(x1,x2,...,xn),通过概率论中的链式法则

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值