目前的分词器大部分都是单机服务器进行分词,或者使用hadoop mapreduce对存储在hdfs中大量的数据文本进行分词。由于mapreduce的速度较慢,相对spark来说代码书写较繁琐。本文使用 spark + ansj对存储在hdfs中的中文文本数据进行分词。
首先下载ansj源码文件,下载地址为 https://github.com/NLPchina/ansj_seg ,同时需要下载nlp-lang.jar包,下载地址上述网站中可以看到。由于spark传输数据必须进行序列化,而ansj中的属性类都没有实现序列化,需要将ansj_seg-master/src/main/java/org/ansj/domain中的属性类AnsjItem、Nature、 NewWord、NumNatureAttr、PersonNatureAttr、Term、TermNature、TermNatures分别实现 Serializable接口。然后使用maven的mvn install生成ansj_seg-2.0.8.jar包,将编译的ansj_seg-2.0.8.jar包 和之前下载的nlp-lang-0.3.jar包加入到spark依赖中,spark便可对hdfs中的文本进行分词。另外,将序列化后编译的jar上传至csdn,可以直接下载使用。
实例如下:
首先下载ansj源码文件,下载地址为 https://github.com/NLPchina/ansj_seg ,同时需要下载nlp-lang.jar包,下载地址上述网站中可以看到。由于spark传输数据必须进行序列化,而ansj中的属性类都没有实现序列化,需要将ansj_seg-master/src/main/java/org/ansj/domain中的属性类AnsjItem、Nature、 NewWord、NumNatureAttr、PersonNatureAttr、Term、TermNature、TermNatures分别实现 Serializable接口。然后使用maven的mvn install生成ansj_seg-2.0.8.jar包,将编译的ansj_seg-2.0.8.jar包 和之前下载的nlp-lang-0.3.jar包加入到spark依赖中,spark便可对hdfs中的文本进行分词。另外,将序列化后编译的jar上传至csdn,可以直接下载使用。
实例如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import
org.apache.spark.SparkContext
import
org.ansj.domain.Term
import
org.ansj.splitWord.analysis.ToAnalysis
import
org.ansj.util.FilterModifWord
import
org.ansj.library.UserDefineLibrary
import
java.util.Arrays
object TokenTest
extends
App
{
val sc =
new
SparkContext
val numpatitions =
100
val text = sc.textFile(
"/path/to/ChineseFile"
, numpatitions).map { x =>
val temp = ToAnalysis.parse(x)
//加入停用词
FilterModifWord.insertStopWords(Arrays.asList(
"r"
,
"n"
))
//加入停用词性
FilterModifWord.insertStopNatures(
"w"
,
null
,
"ns"
,
"r"
,
"u"
,
"e"
)
val filter = FilterModifWord.modifResult(temp)
//此步骤将会只取分词,不附带词性
val word =
for
(i<-Range(
0
,filter.size())) yield filter.get(i).getName
word.mkString(
"\t"
)
}
text.saveAsTextFile(
"/pathr/to/TokenFile"
)
}
|