关闭

Python调用MongoDB使用心得

3891人阅读 评论(0) 收藏 举报
分类:

本文是一个Python 使用MongoDB的简单教程,将使用pymongo对MongoDB进行的各种操作进行了简单的汇总,我们进行了简单整理,使用Python的同学可以看一看。

下载相应平台的版本,解压即可。为方便使用,将bin路径添加到系统path环境变量里。其中mongod是服务器,mongo是客户shell,然后创建数据文件目录:在c盘下创建data文件夹,里面创建db文件夹。

基本使用:

安装对应语言的Driver,Python 安装 pymongo

$ easy_install pymongo


使用方法总结,摘自官方教程

创建连接

>>>importpymongo
>>> connection=pymongo.Connection('localhost',27017)

切换数据库

?
1
>>> db =connection.test_database

获取collection

?
1
>>> collection =db.test_collection

db和collection都是延时创建的,在添加Document时才真正创建

文档添加,_id自动创建

?
1
2
3
4
5
6
7
8
>>>importdatetime
>>> post ={"author":"Mike",
...        "text":"My first blog post!",
...        "tags": ["mongodb","python","pymongo"],
...        "date": datetime.datetime.utcnow()}
>>> posts =db.posts
>>> posts.insert(post)
ObjectId('...')

批量插入

?
1
2
3
4
5
6
7
8
9
10
>>> new_posts =[{"author":"Mike",
...              "text":"Another post!",
...              "tags": ["bulk","insert"],
...              "date": datetime.datetime(2009,11,12,11,14)},
...              {"author":"Eliot",
...              "title":"MongoDB is fun",
...              "text":"and pretty easy too!",
...              "date": datetime.datetime(2009,11,10,10,45)}]
>>> posts.insert(new_posts)
[ObjectId('...'), ObjectId('...')]

获取所有collection(相当于SQL的show tables)

?
1
2
>>> db.collection_names()
[u'posts', u'system.indexes']

获取单个文档

?
1
2
>>> posts.find_one()
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

查询多个文档

?
1
2
3
4
5
6
>>forpost inposts.find():
...   post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009,11,12,11,14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
{u'date': datetime.datetime(2009,11,10,10,45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

加条件的查询

?
1
>>> posts.find_one({"author":"Mike"})

高级查询

?
1
>>> posts.find({"date": {"$lt": d}}).sort("author")

统计数量

?
1
2
>>> posts.count()
3

加索引

?
1
2
3
>>>frompymongo importASCENDING, DESCENDING
>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
u'date_-1_author_1'

查看查询语句的性能

?
1
2
3
4
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BtreeCursor date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
2

附自己总结的一点小心得,仅供参考

缺点

  • 不是全盘取代传统数据库(NoSQLFan:是否能取代需要看应用场景)
  • 不支持复杂事务(NoSQLFan:MongoDB只支持对单个文档的原子操作)
  • 文档中的整个树,不易搜索,4MB限制?(NoSQLFan:1.8版本已经修改为16M)

特点(NoSQLFan:作者在这里列举的很多只是一些表层的特点):

  • 文档型数据库,表结构可以内嵌
  • 没有模式,避免空字段开销(Schema Free)
  • 分布式支持
  • 查询支持正则
  • 动态扩展架构
  • 32位的版本最多只能存储2.5GB的数据(NoSQLFan:最大文件尺寸为2G,生产环境推荐64位)

名词对应

  • 一个数据项叫做 Document(NoSQLFan:对应MySQL中的单条记录)
  • 一个文档嵌入另一个文档(comment 嵌入 post)叫做 Embed
  • 储存一系列文档的地方叫做 Collections(NoSQLFan:对应MySQL中的表)
  • 表间关联,叫做 Reference
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:98886次
    • 积分:1279
    • 等级:
    • 排名:千里之外
    • 原创:13篇
    • 转载:73篇
    • 译文:4篇
    • 评论:14条
    文章分类
    最新评论