关闭

神经网络特征可视化

标签: deep learningcomputer vision可视化神经网络network
1310人阅读 评论(0) 收藏 举报
分类:

1. visualizing higher-layer features of a deep network


本文提出了两种可视化方法。 

1. 最大化activation

当训练完一个深层神经网络之后, 固定所有参数。 然后对于某一个神经元的activation进行梯度上升优化来寻找能使它的值最大化的input。 不断的用gradient ascent来更新一个初始化为random value的input。 converge 之后的input就是能使这个神经元activation最大化的input, 也就是这个神经元学到的feature。


2. sampling from a unit of a deep belief network

把一个神经元的activation设为1, 然后generate 一些相应的samples, 通过这些samples估计一个distribution。


3. linear combination of previous layers' filters

这个是已经存在的技术, 用底层的filter线性组合来visulze上层的filter


结论

1. 不同的网络结构或者模型会学到不同的filter。

2. 好的模型学到的filter通常比较容易解释,但是这个不是100%适用。 有些model学到的feature看似不好但是这个model效果也可能很好。

3. deep model 高层的feature相对比较high level 而且可以是底层feature的组合。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:46145次
    • 积分:852
    • 等级:
    • 排名:千里之外
    • 原创:40篇
    • 转载:14篇
    • 译文:0篇
    • 评论:5条
    最新评论