走向云计算之Hadoop YARN的基本原理和运行流程

本文详细介绍了Hadoop YARN的基本原理和运行流程,包括ResourceManager、NodeManager、ApplicationMaster和Container的角色,阐述了YARN的扩展性和容错性,以及MapReduce 2.0与YARN的关系,揭示了YARN如何支持多计算框架在Hadoop集群中资源共享和互不干扰的运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

Yarn是Hadoop集群的资源管理系统。Hadoop2.0对MapReduce框架做了彻底的设计重构,我们称Hadoop2.0中的MapReduce为MRv2或者Yarn。我们先回头看一下Hadoop1.x的MapReduce模型。
这里写图片描述
Yarn的产生直接源于MRv1在几个方面的缺陷

  • 扩展性受限
  • 单点故障
  • 难以支持MR之外的计算
  • 多计算框架各自为战,数据共享困难
    MR:离线计算框架
    Storm:实时计算框架
    Spark:内存计算框架

到了Hadoop2.x也就是Yarn,它的目标是将功能分开,也就是分别用两个进程来管理这两个任务:

  • ResourceManger
  • ApplicationMaster

需要注意的是,在Yarn中我们把job的概念换成了application,因为在新的Hadoop2.x中,运行的应用不只是MapReduce了,还有可能是其它应用如一个DAG(有向无环图Directed Acyclic Graph,例如storm应用)。Yarn的另一个目标就是拓展hadoop,使得它不仅仅可以支持MapReduce计算,还能很方便的管理诸如Hive、Hbase、Pig、Spark/Shark等应用。这种新的架构设计能够使得各种类型的应用运行在Hadoop上面,并通过Yarn从系统层面进行统一的管理,也就是说,有了Yarn,各种应用就可以互不干扰的运行在同一个Hadoop系统中,共享整个集群资源,如下图所示:
这里写图片描述

二、Yarn的基本架构

YARN总体上仍然是Master/Slav

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值