关闭

leetcode #64 in cpp

标签: cppleetcode
73人阅读 评论(0) 收藏 举报
分类:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.


Solution:

We use DP where dp[i][j] = minimum sum along the path from position(i+1,j+1) to the destination. 

Then dp[i][j] = min(dp[i+1][j], dp[i][j+1]) + grid[i][j]. That is, we select the direction which gives us a smaller sum, when we decide to take the next step.  


Code:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size(); 
        vector<vector<int>> dp(m, vector<int>(n,0));
        dp[m-1][n-1] = grid[m-1][n-1];
        for(int i = m-2; i >= 0; i --){//right border
            dp[i][n-1] = grid[i][n-1] + dp[i+1][n-1];
        }
        for(int i = n-2; i >= 0; i--){//bottom border
            dp[m-1][i] = grid[m-1][i]+dp[m-1][i+1];
         }
        for(int i = m-2; i >= 0; i --){
            for(int j = n-2; j>=0; j --){
                dp[i][j] = min(dp[i+1][j], dp[i][j+1])+grid[i][j];//compare results from turning right and turning down
            }
        }
        return dp[0][0];
    }
};

One optimization is to update the sum in place in grid instead of using the dp arrays. This saves us some memory. 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:6729次
    • 积分:1393
    • 等级:
    • 排名:千里之外
    • 原创:139篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档