版权声明：本文为博主原创文章，未经博主允许不得转载。

Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.

For example,

If n = 4 and k = 2, a solution is:

[ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]

Solution:

It is like permutation(#46 and #47). Thus we still use recurrence to search for combinations.

given a list called member that contains i numbers in current combination:

if i == k, push member into our final result

else

for each num[j] in member, i <= j < n;

1. push num[j] into member.

2. recursively find combination of (num[j+1.....n], k-(i+1) )

For example, given [1,2,3,4] and k = 2,

we start from 1, member is []

push 1 into member. Now member is [1], and we just collect 1 number. We need to collect 1 more. Go to next recurrence.

Our current position is 0, we should loop from position 1 to n-1:

1. position 1 which is 2. put 2 into member and member becomes [1,2]. Now we have 2 numbers. put member into final result.

2. position 2 which is 3. put 3 into member and member becomes [1,3]. Now we have 2 numbers, put member into final result

3. position 3 is 4. put 4 into member and member becomes [1,4]. Put member into final result.

recurrence starting from 1 ends

we start from 2, member is []

push 2 into member. Now member is [2], and we just collect 1 number. We need to collect 1 more. Go to next recurrence.

Our current position is 1, we should loop from position 2 to n-1:

1. position 2 which is 3. put 3 into member and member becomes [2,3]. Now we have 2 numbers. put member into final result.

2. position 3 which is 4. put 4 into member and member becomes [2,4]. Now we have 2 numbers, put member into final result

recurrence starting from 2 ends

we start from 3, member is []

push 3 into member. Now member [3], and we just collect 1 number. We need to collect 1 more. Go to next recurrence

Our current position is 2, we should loop from position 3 to n-1:

1. position 3 which is 4. put 4 into member and member becomes [3,4]. Now we have 2 numbers. put member into final result.

recurrence starting from 3 ends

we start from 4, member is []

push 4 into member. Now member [4], and we just collect 1 number. We need to collect 1 more. Go to next recurrence

Our current position is 3, we should loop from position 4 to n-1, but 4 > 3. Thus we terminate the recurrence from 4. member is not pushed.

Code:

class Solution { public: vector<vector<int>> combine(int n, int k) { vector<vector<int>> res; for(int i = 1; i <=n ; i ++){ find_combine(i,n, k-1,vector<int>(), res); } return res; } void find_combine(int i, int n, int left, vector<int> member, vector<vector<int>> &res){ member.push_back(i); if(left == 0){ res.push_back(member); return; } else{ i++; while(i<=n){ find_combine(i, n, left - 1, member, res); i++; } } } };

- 顶
- 0

- 踩
- 0