机器学习实战python实例(2)SVM

原创 2016年08月30日 18:56:33

使用smo算法实现svm
以下代码涉及到的公式推导参照于以下两篇文章,数学推导的部分写的非常好!(如果不了解数学推导过程,代码中的一些部分很可能看不懂)
http://www.thebigdata.cn/JieJueFangAn/12661.html
http://www.wengweitao.com/zhi-chi-xiang-liang-ji-smoxu-lie-zui-xiao-zui-you-hua-suan-fa.html#fnref:calculate
对svm的简要理解可以参见我之前写的http://blog.csdn.net/xiaonannanxn/article/details/52352207

首先我们建立一个SVM.py

# coding:utf-8
from numpy import *
import matplotlib.pyplot as plt

def loadDataSet(filename):
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat, labelMat


def selectJrand(i, m):
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j


def clipAlpha(aj, H, L):
    if aj > H:
        aj = H
    if aj < L:
        aj = L
    return aj


def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    b = 0
    m, n = dataMatrix.shape
    alphas = mat(zeros((m, 1)))
    Iter = 0
    while Iter < maxIter:
        alphaPairsChanged = 0
        for i in xrange(m):
            # y = wx + b, w = ∑αyx
            fXi = float(multiply(alphas, labelMat).T * dataMatrix * dataMatrix[i, :].T) + b
            Ei = fXi - float(labelMat[i])
            # if α needs to be adjusted or it does not satisfy the ktt
            if ((labelMat[i] * Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i, m)
                fXj = float(multiply(alphas, labelMat).T * dataMatrix * dataMatrix[j, :].T) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy()
                alphaJold = alphas[j].copy()
                if labelMat[i] != labelMat[j]:
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L == H:
                    print "L == H"
                    continue
                eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T \
                      - dataMatrix[i, :] * dataMatrix[i, :].T \
                      - dataMatrix[j, :] * dataMatrix[j, :].T
                if eta >= 0:
                    print "eta >= 0"
                    continue
                alphas[j] -= labelMat[j] * (Ei - Ej) / eta
                alphas[j] = clipAlpha(alphas[j], H, L)
                if abs(alphas[j] - alphaJold) < 0.00001:
                    print "j not moving enough"
                    continue
                alphas[i] += labelMat[j] * labelMat[i] * (alphaJold - alphas[j])
                b1 = b - Ei \
                     - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[i, :].T \
                     - labelMat[j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[i, :].T
                b2 = b - Ej \
                     - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T \
                     - labelMat[j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[j, :].T
                if 0 < alphas[i] < C:
                    b = b1
                elif 0 < alphas[j] < C:
                    b = b2
                else:
                    b = (b1 + b2) / 2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (Iter, i, alphaPairsChanged)
        if alphaPairsChanged == 0:
            Iter += 1
        else:
            Iter = 0
        print "iteration number: %d" % Iter
    return b, alphas


def show(dataArr, labelArr, alphas, b):
    for i in xrange(len(labelArr)):
        if labelArr[i] == -1:
            plt.plot(dataArr[i][0], dataArr[i][1], 'or')
        elif labelArr[i] == 1:
            plt.plot(dataArr[i][0], dataArr[i][1], 'Dg')
    # print alphas.shape, mat(labelArr).shape, multiply(alphas, mat(labelArr)).shape
    c = sum(multiply(multiply(alphas.T, mat(labelArr)), mat(dataArr).T), axis=1)
    minY = min(m[1] for m in dataArr)
    maxY = max(m[1] for m in dataArr)
    print minY, maxY
    plt.plot([sum((- b - c[1] * minY) / c[0]), sum((- b - c[1] * maxY) / c[0])], [minY, maxY])
    plt.plot([sum((- b + 1 - c[1] * minY) / c[0]), sum((- b + 1 - c[1] * maxY) / c[0])], [minY, maxY])
    plt.plot([sum((- b - 1 - c[1] * minY) / c[0]), sum((- b - 1 - c[1] * maxY) / c[0])], [minY, maxY])
    plt.show()

以及一个main.py用来测试程序

import SVM
from numpy import *

dataArr, labelArr = SVM.loadDataSet('testSet.txt')
b, alphas = SVM.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
SVM.show(dataArr, labelArr, alphas, b)

最后可以得到svm的分类结果
我特意增加几个离群的点,以显示出松弛变量对整个分类的影响
蓝线即为分割的超平面,绿线和红线上的点即我们所说的“支持向量”,绿线红线之间的点为离群的点
svm分类结果
训练的数据见
http://download.csdn.net/detail/xiaonannanxn/9618859
这次的代码实现了最基本的smo算法,选择αi和αj时分别遍历和随机选择,但是训练100个数据需要14s左右,在增大数据集后这种方法会变得很慢,接下来我会再实现一个优化的smo的算法,并加入核函数

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

机器学习实战python实例(2)SVM优化

简易版的SVM中,SMO算法中α的选择采取遍历且随机的方式,见http://blog.csdn.net/xiaonannanxn/article/details/52372085 优化版中,我们采取...

基于python的SVM 实例

机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰好...

机器学习实战python实例(2)SVM与核函数

前两篇博客涉及到的SVM还只是一个线性分类器,如果在二维情况下遇到如下的情况,线性分类器的效果就不会很好了 这个时候我们就需要一个叫做核函数的东西,简单来说它的最大作用就是把低维数据映射到高维数据,...

对svm的理解

在搜索了很多资料后终于搞明白了SVM,对几个关键的部分做一些记录。 SVM的全称Support Vector Machine,中文名支持向量机,是一种分类算法,常见于二分类问题,和常见的二分类算法不...

学习笔记——支持向量机svm(3)kernel trick(核函数)

回顾上一篇讲到了svm的对偶问题: 将svm的算法维度(w维度)由vc维变成了跟数据量N,但是这样真的就完全简化了么?在我们求Q这个矩阵时,需要先将x转化为z,然后再做内积,复杂度是d^2。在这...

Linux下使用Python的Tkinter库出现的No module named _tkinter问题

在Linux下使用Tkinter库,出现如下问题   File "/usr/local/lib/python2.7/lib-tk/Tkinter.py", line 39, in     imp...

ImportError: No module named _tkinter, please install the python-tk package

在linux下使用matplotlib绘图时出现下列错误。(ubuntu14.04正常,16.04出现这种错误提示): Traceback (most recent call last):   F...

ImportError: No module named _tkinter, please install the python-tk package ubuntu运行tkinter错误

这是由于python的版本没有包含tkinter的模块,只需要把tk的package安装就可以了。 apt-get install python-tk
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)