机器学习实战python实例(2)SVM

原创 2016年08月30日 18:56:33

使用smo算法实现svm
以下代码涉及到的公式推导参照于以下两篇文章,数学推导的部分写的非常好!(如果不了解数学推导过程,代码中的一些部分很可能看不懂)
http://www.thebigdata.cn/JieJueFangAn/12661.html
http://www.wengweitao.com/zhi-chi-xiang-liang-ji-smoxu-lie-zui-xiao-zui-you-hua-suan-fa.html#fnref:calculate
对svm的简要理解可以参见我之前写的http://blog.csdn.net/xiaonannanxn/article/details/52352207

首先我们建立一个SVM.py

# coding:utf-8
from numpy import *
import matplotlib.pyplot as plt

def loadDataSet(filename):
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat, labelMat


def selectJrand(i, m):
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j


def clipAlpha(aj, H, L):
    if aj > H:
        aj = H
    if aj < L:
        aj = L
    return aj


def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    b = 0
    m, n = dataMatrix.shape
    alphas = mat(zeros((m, 1)))
    Iter = 0
    while Iter < maxIter:
        alphaPairsChanged = 0
        for i in xrange(m):
            # y = wx + b, w = ∑αyx
            fXi = float(multiply(alphas, labelMat).T * dataMatrix * dataMatrix[i, :].T) + b
            Ei = fXi - float(labelMat[i])
            # if α needs to be adjusted or it does not satisfy the ktt
            if ((labelMat[i] * Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i, m)
                fXj = float(multiply(alphas, labelMat).T * dataMatrix * dataMatrix[j, :].T) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy()
                alphaJold = alphas[j].copy()
                if labelMat[i] != labelMat[j]:
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L == H:
                    print "L == H"
                    continue
                eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T \
                      - dataMatrix[i, :] * dataMatrix[i, :].T \
                      - dataMatrix[j, :] * dataMatrix[j, :].T
                if eta >= 0:
                    print "eta >= 0"
                    continue
                alphas[j] -= labelMat[j] * (Ei - Ej) / eta
                alphas[j] = clipAlpha(alphas[j], H, L)
                if abs(alphas[j] - alphaJold) < 0.00001:
                    print "j not moving enough"
                    continue
                alphas[i] += labelMat[j] * labelMat[i] * (alphaJold - alphas[j])
                b1 = b - Ei \
                     - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[i, :].T \
                     - labelMat[j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[i, :].T
                b2 = b - Ej \
                     - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T \
                     - labelMat[j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[j, :].T
                if 0 < alphas[i] < C:
                    b = b1
                elif 0 < alphas[j] < C:
                    b = b2
                else:
                    b = (b1 + b2) / 2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (Iter, i, alphaPairsChanged)
        if alphaPairsChanged == 0:
            Iter += 1
        else:
            Iter = 0
        print "iteration number: %d" % Iter
    return b, alphas


def show(dataArr, labelArr, alphas, b):
    for i in xrange(len(labelArr)):
        if labelArr[i] == -1:
            plt.plot(dataArr[i][0], dataArr[i][1], 'or')
        elif labelArr[i] == 1:
            plt.plot(dataArr[i][0], dataArr[i][1], 'Dg')
    # print alphas.shape, mat(labelArr).shape, multiply(alphas, mat(labelArr)).shape
    c = sum(multiply(multiply(alphas.T, mat(labelArr)), mat(dataArr).T), axis=1)
    minY = min(m[1] for m in dataArr)
    maxY = max(m[1] for m in dataArr)
    print minY, maxY
    plt.plot([sum((- b - c[1] * minY) / c[0]), sum((- b - c[1] * maxY) / c[0])], [minY, maxY])
    plt.plot([sum((- b + 1 - c[1] * minY) / c[0]), sum((- b + 1 - c[1] * maxY) / c[0])], [minY, maxY])
    plt.plot([sum((- b - 1 - c[1] * minY) / c[0]), sum((- b - 1 - c[1] * maxY) / c[0])], [minY, maxY])
    plt.show()

以及一个main.py用来测试程序

import SVM
from numpy import *

dataArr, labelArr = SVM.loadDataSet('testSet.txt')
b, alphas = SVM.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
SVM.show(dataArr, labelArr, alphas, b)

最后可以得到svm的分类结果
我特意增加几个离群的点,以显示出松弛变量对整个分类的影响
蓝线即为分割的超平面,绿线和红线上的点即我们所说的“支持向量”,绿线红线之间的点为离群的点
svm分类结果
训练的数据见
http://download.csdn.net/detail/xiaonannanxn/9618859
这次的代码实现了最基本的smo算法,选择αi和αj时分别遍历和随机选择,但是训练100个数据需要14s左右,在增大数据集后这种方法会变得很慢,接下来我会再实现一个优化的smo的算法,并加入核函数

版权声明:本文为博主原创文章,未经博主允许不得转载。

深入解析python版SVM源码系列(一)——添加数据库和绘制效果图

这部分的代码是python版实现SVM分类器的源码,采集于《Machine Learning in Action》的作者公布代码。本文的工作就是深入解析为什么这样实现SVM,以及其中涉及到的pytho...

理解SVM(三)——扩展到多类

前面两个系列分别讲诉了SVM的基本原理和代码实现,如何解决线性不可分情况。这一次我们讲解一下SVM的最后一篇:SVM解决多类分类问题。...

机器学习实战python实例(2)SVM与核函数

前两篇博客涉及到的SVM还只是一个线性分类器,如果在二维情况下遇到如下的情况,线性分类器的效果就不会很好了 这个时候我们就需要一个叫做核函数的东西,简单来说它的最大作用就是把低维数据映射到高维数据,...

PYTHON机器学习实战——SVM支持向量机

支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知识,需要慢慢地理解。理论知识参考: http://www.cnblogs.com/steven-yang/p/5658362.html 一...

Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM

说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进...

Python2《机器学习实战》及源代码

  • 2017年10月28日 21:44
  • 44.07MB
  • 下载

2python机器学习--SVM(决策树分类算法)

数据集中 : 正例 反例 你的预测 正例 : A B 你的预测 反例 : C D 准确率就是A/(A+B) 大白话就是“你的预测有多少是对的” 召回率就是A/(A+C) 大白话就是“正例里你的...

【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识       通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式。详细变法可以参考这位大神的博...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习实战python实例(2)SVM
举报原因:
原因补充:

(最多只允许输入30个字)