Dynamic Time Warping 动态时间规整算法

转载 2015年07月10日 15:25:42


Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。

1. DTW方法原理

在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很短。另外,不同时间序列可能仅仅存在时间轴上的位移,亦即在还原位移的情况下,两个时间序列是一致的。在这些复杂情况下,使用传统的欧几里得距离无法有效地求的两个时间序列之间的距离(或者相似性)。

DTW通过把时间序列进行延伸和缩短,来计算两个时间序列性之间的相似性:

如上图所示,上下两条实线代表两个时间序列,时间序列之间的虚线代表两个时间序列之间的相似的点。DTW使用所有这些相似点之间的距离的和,称之为归整路径距离(Warp Path Distance)来衡量两个时间序列之间的相似性。

2. DTW计算方法:

令要计算相似度的两个时间序列为X和Y,长度分别为|X|和|Y|。

归整路径(Warp Path)

归整路径的形式为W=w1,w2,...,wK,其中Max(|X|,|Y|)<=K<=|X|+|Y|。

wk的形式为(i,j),其中i表示的是X中的i坐标,j表示的是Y中的j坐标。

归整路径W必须从w1=(1,1)开始,到wK=(|X|,|Y|)结尾,以保证X和Y中的每个坐标都在W中出现。

另外,W中w(i,j)的i和j必须是单调增加的,以保证图1中的虚线不会相交,所谓单调增加是指:

最后要得到的归整路径是距离最短的一个归整路径:

最后求得的归整路径距离为D(|X|,|Y|),使用动态规划来进行求解:

上图为代价矩阵(Cost Matrix) D,D(i,j)表示长度为i和j的两个时间序列之间的归整路径距离。

3. DTW实现:

matlab代码:

复制代码
function dist = dtw(t,r)
n = size(t,1);
m = size(r,1);
% 帧匹配距离矩阵
d = zeros(n,m);
for i = 1:n
    for j = 1:m
        d(i,j) = sum((t(i,:)-r(j,:)).^2);
    end
end
% 累积距离矩阵
D = ones(n,m) * realmax;
D(1,1) = d(1,1);
% 动态规划
for i = 2:n
    for j = 1:m
        D1 = D(i-1,j);
        if j>1
            D2 = D(i-1,j-1);
        else
            D2 = realmax;
        end
        if j>2
            D3 = D(i-1,j-2);
        else
            D3 = realmax;
        end
        D(i,j) = d(i,j) + min([D1,D2,D3]);
    end
end
dist = D(n,m);
复制代码

C++实现:

dtwrecoge.h

复制代码
/***dtwrecoge.h*********************************************************************/
#ifndef dtwrecoge_h
#define dtwrecoge_h

#include<stdio.h>
#include<math.h>

#define DTWMAXNUM 2000
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
#define ABS(a) ((a)>0?(a):(-(a)))
#define DTWVERYBIG 100000000.0

/*****************************************************************************/
/* DTWDistance,求两个数组之间的匹配距离
/* A,B分别为第一第二个数组,I,J为其数组长度,r为匹配窗口的大小
/* r的大小一般取为数组长度的1/10到1/30
/* 返回两个数组之间的匹配距离,如果返回-1.0,表明数组长度太大了
/*****************************************************************************/
double DTWDistanceFun(double *A,int I,double *B,int J,int r);

/*****************************************************************************/
/* DTWTemplate,进行建立模板的工作
/* 其中A为已经建立好的模板,我们在以后加入训练样本的时候,
/* 以已建立好的模板作为第一个参数,I为模板的长度,在这个模板中不再改变
/* B为新加入的训练样本,J为B的长度,turn为训练的次数,在第一次
/* 用两个数组建立模板时,r为1,这是出于权值的考虑
/* temp保存匹配最新训练后的模板,建议temp[DTWMAXNUM],函数返回最新训练后模板的长度
/* 如果函数返回-1,表明训练样本之间距离过大,需要重新选择训练样本,
/* tt为样本之间距离的阈值,自行定义
/*****************************************************************************/
int DTWTemplate(double *A,int I,double *B,int J,double *temp,int turn,double tt,double *rltdistance);

#endif
复制代码

 dtwrecoge.cpp

复制代码
/*dtwrecoge.cpp**************************************************************/

#include "dtwrecoge.h"
double distance[DTWMAXNUM][DTWMAXNUM]; /*保存距离*/
double dtwpath[DTWMAXNUM][DTWMAXNUM]; /*保存路径*/

/*****************************************************************************/
/* DTWDistance,求两个数组之间的匹配距离
/* A,B分别为第一第二个数组,I,J为其数组长度,r为匹配窗口的大小

/* r的大小一般取为数组长度的1/10到1/30
/* 返回两个数组之间的匹配距离,如果返回-1.0,表明数组长度太大了
/*****************************************************************************/
double DTWDistanceFun(double *A,int I,double *B,int J,int r)
{
    int i,j;
    double dist;
    int istart,imax;
    int r2=r+ABS(I-J);/*匹配距离*/
    double g1,g2,g3;
    int pathsig=1;/*路径的标志*/

    /*检查参数的有效性*/
    if(I>DTWMAXNUM||J>DTWMAXNUM){
        //printf("Too big number\n");
        return -1.0;
    }
    
    /*进行一些必要的初始化*/
    for(i=0;i<I;i++){
        for(j=0;j<J;j++){
            dtwpath[i][j]=0;
            distance[i][j]=DTWVERYBIG;
        }
    }
    
    /*动态规划求最小距离*/
    /*这里我采用的路径是 -------
                              . |
                            .   |
                          .     |
                        .       |
     */
    distance[0][0]=(double)2*ABS(A[0]-B[0]);
    for(i=1;i<=r2;i++){
        distance[i][0]=distance[i-1][0]+ABS(A[i]-B[0]);
    }
    for(j=1;j<=r2;j++){
        distance[0][j]=distance[0][j-1]+ABS(A[0]-B[j]);
    }
    
    for(j=1;j<J;j++){
        istart=j-r2;
        if(j<=r2)
            istart=1;
        imax=j+r2;
        if(imax>=I)
            imax=I-1;
        
        for(i=istart;i<=imax;i++){
            g1=distance[i-1][j]+ABS(A[i]-B[j]);
            g2=distance[i-1][j-1]+2*ABS(A[i]-B[j]);
            g3=distance[i][j-1]+ABS(A[i]-B[j]);
            g2=MIN(g1,g2);
            g3=MIN(g2,g3);
            distance[i][j]=g3;
        }
    }
        
    dist=distance[I-1][J-1]/((double)(I+J));
    return dist;
}/*end DTWDistance*/

/*****************************************************************************/
/* DTWTemplate,进行建立模板的工作
/* 其中A为已经建立好的模板,我们在以后加入训练样本的时候,
/* 以已建立好的模板作为第一个参数,I为模板的长度,在这个模板中不再改变
/* B为新加入的训练样本,J为B的长度,turn为训练的次数,在第一次
/* 用两个数组建立模板时,r为1,这是出于权值的考虑
/* temp保存匹配最新训练后的模板,建议temp[DTWMAXNUM],函数返回最新训练后模板的长度
/* 如果函数返回-1,表明训练样本之间距离过大,需要重新选择训练样本,
/* tt为样本之间距离的阀值,自行定义
/* rltdistance保存距离,第一次两个数组建立模板时可以随意赋予一个值,
/* 后面用前一次返回的值赋予该参数
/*****************************************************************************/
int DTWTemplate(double *A,int I,double *B,int J,double *temp,int turn,double tt,double *rltdistance)
{
    double dist;
    int i,j;
    int pathsig=1;
    dist=DTWDistanceFun(A,I,B,J,(int)(I/30));
    if(dist>tt){
        printf("\nSample doesn't match!\n");
        return -1;
    }
        
    if(turn==1)
        *rltdistance=dist;
    else{
        *rltdistance=((*rltdistance)*(turn-1)+dist)/turn;
    }
    /*寻找路径,这里我采用了逆向搜索法*/
    i=I-1;
    j=J-1;
    while(j>=1||i>=1){
        double m;
        if(i>0&&j>0){
            m=MIN(MIN(distance[i-1][j],distance[i-1][j-1]),distance[i][j-1]);
            if(m==distance[i-1][j]){
                dtwpath[i-1][j]=pathsig;
                i--;
            }
            else if(m==distance[i-1][j-1]){
                dtwpath[i-1][j-1]=pathsig;
                i--;
                j--;
            }
            else{
                dtwpath[i][j-1]=pathsig;
                j--;
            }
        }
        else if(i==0){
            dtwpath[0][j-1]=pathsig;
            j--;
        }
        else{/*j==0*/
            dtwpath[i-1][0]=pathsig;
            i--;
        }
    }
    dtwpath[0][0]=pathsig;
    dtwpath[I-1][J-1]=pathsig;
    
    /*建立模板*/
    for(i=0;i<I;i++){
        double ftemp=0.0;
        int ntemp=0;
        for(j=0;j<J;j++){
            if(dtwpath[i][j]==pathsig){
                ftemp+=B[j];
                ntemp++;
            }
        }
        ftemp/=((double)ntemp);
        temp[i]=(A[i]*turn+ftemp)/((double)(turn+1));/*注意这里的权值*/
    }
    
    return I;/*返回模板的长度*/
}//end DTWTemplate

相关文章推荐

Dynamic Time Warping 动态时间规整算法

Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。 1. DTW方法原理 在时间序列中,需...

Dynamic Time Warping 动态时间规整算法

随笔- 133  文章- 0  评论- 306  Dynamic Time Warping 动态时间规整算法 Dynamic Time Warpin...

Dynamic Time Warping(DTW)动态时间规整算法

Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。 1. DTW方法原理 在时间序列中,需要比较相...

Dynamic Time Warping(DTW—— 动态时间规整算法

Dynamic Time Warping 动态时间规整算法 Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识...

【重大修改】动态时间规整(Dynamic Time Warping)

本文知识简单的介绍DTW算法的目的和实现。具体的DTW可以参考一下文献: 离散序列的一致性度量方法:动态时间规整(DTW)  http://blog.csdn.net/liyuefeilong/art...

动态时间规整(Dynamic Time Warping)

转自:http://www.cnblogs.com/luxiaoxun/archive/2013/05/09/3069036.html Dynamic Time Warping(DT...

DTW(Dynamic Time Warping)算法

变量定义1.warping function F=c(1),c(2)...c(k)...c(K)F=c(1),c(2)...c(k)...c(K) 其中c(k)=(i(k),j(k))c(k)=(...
  • xmdxcsj
  • xmdxcsj
  • 2017年04月20日 19:47
  • 644

DTW(一)

reference: http://blog.csdn.net/zouxy09/article/details/9140207 http://www.cnblogs...

Programatically understanding dynamic time warping

http://nipunbatra.github.io/2014/07/dtw/ So you just recorded yourself saying a word and ...
  • scdxmoe
  • scdxmoe
  • 2016年12月21日 17:40
  • 219
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Dynamic Time Warping 动态时间规整算法
举报原因:
原因补充:

(最多只允许输入30个字)