计算机体系结构(二)——码制

标签: 编程
1016人阅读 评论(7) 收藏 举报
分类:

    现在很多程序员,只是会用计算机编程,但是许多基础的知识却很薄弱。今天就跟大家说说码制的问题。计算机对数据做的读取、传输、运算、显示等操作,都离不开码制。常见的编码方式有:原码、反码、补码、移码、BCD码。我们一一说道。

    【原码】
    表示:最高位为符号位(0表正,1表负),其余各位为数的绝对值。
    举例: [+11] =00001011  。 [-11] = 10001011 。
    范围:-127~+127
    优点:乘除法操作比较简单
    缺点:0有2种表示方法, [+0] =00000000, [-0] =10000000 。加减法运算可能会出现溢出错误。
    错误再现:(1)10 (1)10 =  (0)10 ,用原码表示的: (00000001)+ (10000001)(10000010)=  (-2)10
    错误原因:原码的符号位不能直接参与运算,否则可能会出现错误。
    为了解决原码的加减法缺陷,引入了一个新的编码——反码。
    【反码】
    表示:由原码转换而来,正数跟原码一致;负数,符号位不变,其余各位按位取反。
    举例: [+11] = [+11] =00001011 。 [-11] = 11110100 。
    范围:-127~+127
    优点:符号位可以直接参与运算。减法可以变为加法运算。
    缺点:0有2种表示方法,  [+0]  =00000000,  [-0] =11111111 
    错误再现:(1)10 (1)10 =  (0)10 ,使用反码的结果是: (00000001)+ (11111110)(11111111)=  (-0)10
 
    解决了加减法缺陷,还需要解决0编码的问题,遂又引入了一个新的编码——补码。
 
    【补码】
    表示:由反码转换而来,正数跟原码一致;负数,反码+1。
    举例: [+11] = [+11] =00001011 。 [-11] = 11110101 。
    范围:-128~+127
    优点:符号位可以直接参与运算。减法可以变为加法运算。0有唯一编码,  [+0] =[-0] =00000000 。
    现在 (1)10 (1)10 =  (0)10 ,用补码表示的: (00000001)+ (11111111)(00000000)=  (0)10,结果正确。
    溢出判断:两个正数相加,如果符号位变为1,则溢出。两个负数相加,符号位变为了0,则溢出。正数+负数则不会溢出。
    【移码】
    表示:跟补码数值位一样,但符号位取反。
    举例: [+11] = 10001011 。 [-11] = 01110101 。
    范围:-128~+127
    【8421BCD码】
    表示:十进制数每位都用4位2进制数表示 。
    举例: 43 => 0100 0011 。
    优点:容易读数,二进制和十进制的转换快捷,适用于会计系统。
    溢出修正:结果>=9,则+6,进1 。如3+5:0011 + 0101 = 1000 正确。6+7:0110 + 0111 = 1101,结果需修正,1101+0110 = 10011 =(13)10 
 

 

7
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    勤學如春起之苗,不見其增,日有所長。辍學如磨刀之石,不見其損,日有所虧。
    个人资料
    • 访问:1618253次
    • 积分:18739
    • 等级:
    • 排名:第498名
    • 原创:202篇
    • 转载:19篇
    • 译文:10篇
    • 评论:3085条
    我的微博
    时空隧道
    博客专栏