关闭

简单易学ELM

103人阅读 评论(0) 收藏 举报

[原]简单易学的机器学习算法——极限学习机(ELM)

2014-4-24阅读10858 评论23

一、极限学习机的概念

    极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。

    ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。

二、极限学习机的原理

ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输出权重。


(选自黄广斌老师的PPT)

对于一个单隐层神经网络(见Figure 1),假设有个任意的样本,其中。对于一个有个隐层节点的单隐层神经网络可以表示为


其中,为激活函数,为输入权重,为输出权重,是第个隐层单元的偏置。表示的内积。


     单隐层神经网络学习的目标是使得输出的误差最小,可以表示为


即存在,使得


可以矩阵表示为


其中,是隐层节点的输出,为输出权重,为期望输出。



为了能够训练单隐层神经网络,我们希望得到,使得


其中,,这等价于最小化损失函数


传统的一些基于梯度下降法的算法,可以用来求解这样的问题,但是基本的基于梯度的学习算法需要在迭代的过程中调整所有参数。而在ELM算法中, 一旦输入权重和隐层的偏置被随机确定,隐层的输出矩阵就被唯一确定。训练单隐层神经网络可以转化为求解一个线性系统。并且输出权重可以被确定


其中,是矩阵的Moore-Penrose广义逆。且可证明求得的解的范数是最小的并且唯一。

三、实验

    我们使用简单易学的机器学习算法——Logistic回归》中的实验数据。

原始数据集
我们采用统计错误率的方式来评价实验的效果,其中错误率公式为:
对于这样一个简单的问题,
MATLAB代码
主程序
%% 主函数,二分类问题

%导入数据集
A = load('testSet.txt');

data = A(:,1:2);%特征
label = A(:,3);%标签

[N,n] = size(data);

L = 100;%隐层节点个数
m = 2;%要分的类别数

%--初始化权重和偏置矩阵
W = rand(n,L)*2-1;
b_1 = rand(1,L);
ind = ones(N,1);
b = b_1(ind,:);%扩充成N*L的矩阵

tempH = data*W+b;
H = g(tempH);%得到H

%对输出做处理
temp_T=zeros(N,m);
for i = 1:N
    if label(i,:) == 0
        temp_T(i,1) = 1;
    else 
        temp_T(i,2) = 1;
    end    
end
T = temp_T*2-1;

outputWeight = pinv(H)*T;

%--画出图形
x_1 = data(:,1);  
x_2 = data(:,2);  
hold on  
for i = 1 : N  
    if label(i,:) == 0  
        plot(x_1(i,:),x_2(i,:),'.g');  
    else  
        plot(x_1(i,:),x_2(i,:),'.r');  
    end  
end

output = H * outputWeight;
%---计算错误率
tempCorrect=0;
for i = 1:N
    [maxNum,index] = max(output(i,:));
    index = index-1;
    if index == label(i,:);
        tempCorrect = tempCorrect+1;
    end
end

errorRate = 1-tempCorrect./N;

激活函数
function [ H ] = g( X )
    H = 1 ./ (1 + exp(-X));
end

黄老师提供的极限学习机的代码:点击打开链接
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5723次
    • 积分:145
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条
    文章存档