【NOIP2008tj】传纸条

原创 2015年11月18日 20:30:05

题目

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

分析

这题其实是dp,但也可以是网络流(费用流),所以特地来练练手。
首先,这题是两条路径,怎么办?我们会发现,两条路径一定经过(1,2)或(2,1)这两个点之中一个,所以我们就强制源点连这两个点容量为1,费用为0,特殊的,我们还要把(n-1,m),(n,m-1)(同理和前面一样)强制连汇点其他的点就向四个方向连边容量为1,费用为连过去的点的点权。
然后我们便可以去跑一次最大费用流
代码

var
    n,m,t,i,j,k,x,y,nu,ans:longint;
    a1:array[1..50,1..50] of longint;
    q:array[1..2,1..2] of longint=((0,1),(1,0));
    las,b,nex,f,dis,v,re,a:array[0..70000] of longint;
    bz:array[1..70000] of boolean;
function min(l,r:longint):longint;
begin
   if l<r then exit(l);exit(r);
end;
procedure insert(x,y,z,k:longint);
begin
   inc(nu);b[nu]:=y;nex[nu]:=las[x];las[x]:=nu;f[nu]:=z;v[nu]:=k;
   inc(nu);b[nu]:=x;nex[nu]:=las[y];las[y]:=nu;f[nu]:=0;v[nu]:=-k;
end;
function spfa:boolean;
var l,r,now,p:longint;
begin
    l:=0;r:=1;fillchar(bz,sizeof(bz),false);fillchar(dis,sizeof(dis),128);dis[1]:=0;a[1]:=1;bz[1]:=true;
    while l<r do begin
        inc(l);now:=a[l];p:=las[now];
        while p<>0 do begin
            if (dis[b[p]]<dis[now]+v[p])and(f[p]>0) then begin
               dis[b[p]]:=dis[now]+v[p];re[b[p]]:=p;
               if not bz[b[p]] then begin bz[b[p]]:=true;inc(r);a[r]:=b[p];end;
            end;p:=nex[p];
        end;
        bz[now]:=false;
    end;
    if dis[t]>0 then ans:=ans+dis[t];
    exit(dis[t]>0);
end;
procedure find;
var p,x,sum:longint;
begin
    x:=t;sum:=maxlongint;
    while x<>1 do begin
        sum:=min(sum,f[re[x]]);x:=b[re[x] xor 1];
    end;
    x:=t;
    while x<>1 do begin
        dec(f[re[x]],sum);inc(f[re[x] xor 1],sum);x:=b[re[x] xor 1];
    end;
end;
begin
    readln(n,m);nu:=1;t:=n*m*2;
    for i:=1 to n do for j:=1 to m do read(a1[i,j]);
    insert(n*m,n*m*2,2,0);insert(1,n*m+1,2,0);
    for i:=1 to n do
    for j:=1 to m do begin
       for k:=1 to 2 do begin
           x:=i+q[k,1];y:=j+q[k,2];
           if (x<1)or(y<1)or(x>n)or(y>m) then continue;
           insert((i-1)*m+j+n*m,(x-1)*m+y,1,a1[x,y]);
       end;
       if (i=1)and(j=1) then continue;
       if (i=n)and(j=m) then continue;
       insert((i-1)*m+j,(i-1)*m+j+n*m,1,0);
    end;
    while spfa do
    find;
    writeln(ans);
end.
版权声明:本文为博主原创文章,未经博主允许不得转载。

[NOIP2008]传纸条【多维DP】

【问题描述】 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸...

NOIP2008 提高组 C - 传纸条

上周的队内练习学弟选了这题来做~~当时纠结了很久也没搞出来...一个纸条传下去很好做~~但是两个纸条我当时就是没想通如何来避免后效性..    这道题的DP思想关键就是找到能表示出来的唯一状态......
  • kk303
  • kk303
  • 2011年11月25日 21:25
  • 2874

NOIP2008提高组 传纸条

NOIP2008提高组 传纸条 题目描述     小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两...

noip2008 传纸条 (动态规划寻找最优路径)

P1493传纸条 Accepted 标签:动态规划NOIP提高组2008 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学...

Problem D: [NOIP2008]传纸条 T3

[NOIP2008]传纸条 T3Description  小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对...

【DP】[NOIP2008]传纸条

[NOIP2008]传纸条 问题编号:400   题目描述 【问题描述】 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵...

【NOIP 2008 提高组 T3】传纸条(DP)

题目描述 Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,...
  • Loi_YZS
  • Loi_YZS
  • 2016年11月03日 19:05
  • 287

传纸条 NOIP2008 洛谷1006 二维dp

二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂,...

【NOIP2008】传纸条题解

题面描述 Description小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无...

NOIP2008 T3 传纸条 解题报告——S.B.S.

题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的...
  • SBS2000
  • SBS2000
  • 2016年05月02日 16:45
  • 492
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【NOIP2008tj】传纸条
举报原因:
原因补充:

(最多只允许输入30个字)