关闭

反正切函数的应用解题报告

标签: outputinput算法c
890人阅读 评论(1) 收藏 举报
分类:
反正切函数可展开成无穷级数,有如下公式

(其中0 <= x <= 1) 公式(1)

使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法:

PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2)

然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式:

tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3)

通过简单的变换得到:

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4)

利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有

arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)

使用1/2和1/3的反正切来计算arctan(1),速度就快多了。
我们将公式(4)写成如下形式

arctan(1/a)=arctan(1/b)+arctan(1/c)

其中a,b和c均为正整数。

我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。

Input

输入文件中只有一个正整数a,其中 1 <= a <= 60000。

Output

输出文件中只有一个整数,为 b+c 的值。

Sample Input

1

Sample Output

5
#include <stdio.h> 
#include <stdlib.h>
#include <string.h>
#define I64 __int64
int main()
{
	I64 a;
	while(scanf("%I64d",&a)!=EOF)
	{
		I64 i;
		for(i=a;;i--)
		{
			
			if((a*a+1)%i==0)
			{
				printf("%I64d\n",i+(a*a+1)/i+2*a);
				break;
			}
	}
	}
	return 0;
}
i是小于a的,所以从a开始查找,题目要求找最小值,我好像只是单纯的找出数而已,其实这是个典型的数学问题,通过(1/a)=((1/b)+(1/c))/(1-(1/b)*(1/c)),又因为b>a,c>a,所以可设c=a+n,b=a+m,解得a*a+1=m*n;m+n+a+a即为b+c。所以就是求m+n的最小值。
以下还有个c++的代码,可以参考一下,因为这个的算法好一点,起码时间少了1/2;
#include <stdio.h> 
#include <stdlib.h>
#include <string.h>
#define I64 __int64
int main() 
{
   I64 a;
   while(scanf("%I64d", &a)!=EOF)
   {
	   I64 m, n;
	   for(I64 i = a; ; --i) 
	   {
		  if(!((a * a + 1) % i)) 
		  {
			 m = i;
			 n = (a * a + 1) / m;
			 break;
		  }
	   }
	   printf("%I64d\n", 2 * a + m + n);
   }
   return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:84173次
    • 积分:1237
    • 等级:
    • 排名:千里之外
    • 原创:45篇
    • 转载:14篇
    • 译文:0篇
    • 评论:6条
    最新评论