关闭

Goldbach's Conjecture 解题报告

标签: numberspairinputoutputintegerless
442人阅读 评论(1) 收藏 举报
分类:

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:
Every even number greater than 4 can be
written as the sum of two odd prime numbers.

For example:
8 = 3 + 5. Both 3 and 5 are odd prime numbers.
20 = 3 + 17 = 7 + 13.
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

Input

The input will contain one or more test cases.
Each test case consists of one even integer n with 6 <= n < 1000000.
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0

Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37
#include<math.h>
#include<stdio.h>
int h[1000001]={0};
int main()
{
	int  n,a,b,c,d,k=0;
	h[1]=1; //1不是素数。
	b=(int)sqrt(1000000);
	for(a=2;a<=b;a++)
	{
		if(h[a]==0)
		{
			d=1;
			for(c=2;d<1000000;c++)
			{
				d=a*c;  //能相乘得到的都不是素数。
				h[d]=1;
				if(d==1000000)
					break;
			}
		}
	}
	while(scanf("%d",&n)!=EOF)
	{
		k=0;
		if(n==0)
			break;
		else
		{
			for(b=2;b<n;b++)
			{
				if(h[b]==0&&h[n-b]==0)
				{
					k=1;
					printf("%d = %d + %d\n",n,b,n-b);
					break;
				}
			}
			if(k==0)
				printf("Goldbach's conjecture is wrong.\n");
		}
	}
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:84134次
    • 积分:1237
    • 等级:
    • 排名:千里之外
    • 原创:45篇
    • 转载:14篇
    • 译文:0篇
    • 评论:6条
    最新评论