基于非参数核密度估计的行人分割

原创 2016年06月01日 21:50:49

这是模式识别的一个实验,参考文献是:

[1] L. Zhao, L.S. Davis, “Iterative figure-ground discrimination,” 17th International Conference on Pattern Recognition (ICPR), vol. 1, pp. 67-70, 2004.

[2] Automatic Pedestrian Segmentation Combining Shape, Puzzle and Appearance,2013

原理:略

算法步骤:

Ft(x)Bt(x)分别为像素x在第t(t=0,…,N)次迭代中属于前景和背景的概率, 基于KDE-EM的前景概率估计过程如下:

初始化:

初始的前景概率图为一个先验统计图PM, 即
F0(x)=PM(x)
B0(x)=1F0
先验统计图PM为300幅前景掩码图的叠加:
先验模板

开始迭代,设置迭代次数:

S-步骤:

M-步骤:

计算前景和背景概率:

根据下式更新图像中所有像素点属于前景和背景的概率

Ft=cFt1(y)xiXFt1(xi)j=1dkerj(yjxi,j)

Bt=cBt1(y)xiXBt1(xi)j=1dkerj(yjxi,j)

x——采样点
y——图像中所有的点

归一化:

F=FF+B

B=1F


结果图:

原图 第1次迭代 第2次迭代 第3次迭代 第4次迭代 第5次迭代

代码:

# -*- coding: utf-8 -*-
# Author: XieYi

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import math
from sklearn import preprocessing
from skimage import filters
import matplotlib.cm as cm
import time
"""
准备工作,读入图片
"""
img = Image.open("p26.bmp")
img = img.convert('L')
img = np.array(img,'f')
img = img/img.max()
m,n = img.shape
imgVector = img.reshape((m*n,1))

# 参数
c = 1.0
sigma = 0.005   # 控制边界精度,即模糊程度sigma越大越模糊
sampleRate = 0.05

"""
读入模板
"""
#将前三列置0
mask = Image.open('mask.png')
mask = mask.convert('L')
mask = mask.resize((n,m))
mask = np.array(mask,'f')
mask[:,:3] = 0

# 采样点,初始化F0和B0
nSamples = int(sampleRate * m * n)
F0 = np.zeros((m*n,1))
F0 = mask.reshape((m*n,1))
F0max = F0.max()
F0 = F0 / F0max
B0 = 1-F0
F, B = F0, B0
#迭代
t0 = time.time()
for i in np.arange(6):
    print str(i+1),"次迭代...."
    #S步
    samples = np.zeros((nSamples,1))
    for j in np.arange(nSamples):
        y = np.random.randint(0, m-1)
        x = np.random.randint(0, n-1)
        samples[j,0] = y * n + x

    #M步
    f = np.zeros((m*n,1))
    b = np.zeros((m*n,1))
    for Xi in np.arange(nSamples):
        posSample = samples[Xi,0]
        valueSample = imgVector[samples[Xi,0],0]
        diffMat = imgVector - np.tile(valueSample,(m*n,1))
        diffMat  = diffMat**2
        expDiff = np.exp(-diffMat / 2.0 / (sigma**2))
        f = f + c * (F[posSample,0]) / math.sqrt(2*math.pi) / sigma * expDiff

    f = f * F
    min_max_scaler = preprocessing.MinMaxScaler()
    f = min_max_scaler.fit_transform(f)

    for Yi in np.arange(nSamples):
        posSample = samples[Yi,0]
        valueSample = imgVector[samples[Yi,0],0]
        diffMat = imgVector - np.tile(valueSample,(m*n,1))
        diffMat  = diffMat**2
        expDiff = np.exp(-diffMat / 2.0 / (sigma**2))
        b = b + c * (B[posSample,0]) / math.sqrt(2*math.pi) / sigma * expDiff
    b = b * B
    b = min_max_scaler.fit_transform(b)

    add = f + b
    f = f / add
    b = 1 - f
    F, B = f, b
    output = F.reshape((m,n))
    plt.imsave(str(i+1), output,  cmap=cm.gray)
    plt.figure(str(i+1))
    plt.imshow(output,cmap=cm.gray)

print "time:",time.time() - t0
thresh = filters.threshold_otsu(output)
dst =(output >= thresh)*1.0
plt.figure("output")
plt.imshow(dst,cmap=cm.gray)

# 直接利用阈值分割
threshImg = filters.threshold_otsu(img)
dstImg =(img >= threshImg)*1.0
plt.figure("Img")
plt.imshow(dstImg,cmap=cm.gray)
plt.show()
版权声明:本文为博主原创文章,欢迎转载,要是能注明出处就更好了

相关文章推荐

非参数密度估计(直方图与核密度估计)

主要讲述直方图与kernel density estimation,参考维基百科中的经典论述,从直方图和核密度估计的实现对比来说明这两种经典的非参数密度估计方法,具体的细节不做深入剖析。

非参数估计:核密度估计KDE

http://blog.csdn.net/pipisorry/article/details/53635895核密度估计Kernel Density Estimation(KDE)概述密度估计的问题由...

核密度估计

  • 2013-01-29 17:01
  • 492KB
  • 下载

MATLAB二维核密度估计

核密度估计原理

最近在读wek的代码的时候,发现weka的naive bayes分类器中有使用到核概率密度估计,想了一下核概率密度估计原理。         核密度估计是在概率论中用来估计未知的密度函数,属于非...

核密度估计

python核密度估计(KernelDensity)

在获得数据之后,我们需要对数据进行分析,以便了解数据的基本性质,为后续的模型选择和模型训练提供依据。了解特征的分布,是机器学习的第一步,同时也是相当关键的一步。我们引入了核密度估计来帮助我们了解数据的...

kde 核密度估计(KDE)

高斯核密度估计代码

内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)