机器学习笔记—-监督学习与无监督学习的异同

原创 2015年07月06日 17:02:22

**

机器学习笔记—-监督学习与无监督学习的异同

**

有监督学习

在监督学习中,输入数据和输出数据存在某种关系,即在已经给定的数据集下,对应的正确输出结果,已经大约知道是什么样子了。

有监督学习常常被归类为 回归 和 分类 问题。

在回归问题中,我们希望得到连续值的输出预测值,即,使用某些连续函数来映射输入值。

在分类问题中,则希望获得的是离散的预测值。将输入值映射到离散的种类上。

无监督学习

无监督学习,对于问题最终的结果,只有很少或没有什么感知。从已有数据中抽取相应的结构,且不必知道数据变量间的影响。

通过 聚类 在数据中变量关系的基础上 获取数据中内在的结构

无监督学习中,预测结果没有反馈。典型的例子,文本分类。

参考文献:
https://www.coursera.org/learn/machinelearning/supplement/X64SM/introduction

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

机器学习笔记11——无监督学习之k-means聚类算法

无监督学习 k-means聚类算法 混合高斯模型 EM算法

[机器学习入门] 李弘毅机器学习笔记-16 (Unsupervised Learning: Neighbor Embedding;无监督学习:邻域嵌套)

[机器学习入门] 李弘毅机器学习笔记-16 (Unsupervised Learning: Neighbor Embedding;无监督学习:邻域嵌套) PDF VIDEOManifold L...

[机器学习入门] 李宏毅机器学习笔记-14 (Unsupervised Learning: Linear Dimension Reduction;无监督学习:线性降维)

[机器学习入门] 李宏毅机器学习笔记-14 (Unsupervised Learning: Linear Dimension Reduction;线性降维) PDF VIDEOUnsupe...

斯坦福大学公开课 :机器学习课程(Andrew Ng)——12、无监督学习:Factor Analysis

1)问题描述 2)协方差矩阵的限制 3)多元高斯分布的边缘分布和条件分布 4)因子分析的例子 5)因子分析模型 6)因子分析的EM估计‘ 7)简单总结 1)问题描述    之前我们考虑...
  • mmc2015
  • mmc2015
  • 2015年01月06日 14:31
  • 1347

Python机器学习应用 | 无监督学习课程测验

1单选(2分) 以下距离度量方法中,要对样本点的各个属性进行标准化的是: A.马氏距离 B.欧氏距离 C.曼哈顿距离 D.夹角余弦正确答案:A2单选(2分) 以下不属于无监督学习的算法是:...

斯坦福大学公开课 :机器学习课程(Andrew Ng)——15、无监督学习:Reinforcement Learning and Control

在之前的讨论中,我们总是给定一个样本x,然后给出或者不给出label y。之后对样本进行拟合、分类、聚类或者降维等操作。然而对于很多序列决策或者控制问题,很难有这么规则的样本。比如,四足机器人的控制问...
  • mmc2015
  • mmc2015
  • 2015年01月06日 19:29
  • 1332

斯坦福大学公开课 :机器学习课程(Andrew Ng)——14、无监督学习:Independent Component Analysis(ICA)

1)问题描述     1、上节提到的PCA是一种数据降维的方法,但是只对符合高斯分布的样本点比较有效,那么对于其他分布的样本,有没有主元分解的方法呢?     2、经典的鸡尾酒宴会问题(cocktai...
  • mmc2015
  • mmc2015
  • 2015年01月06日 19:20
  • 1001

机器学习之(二)OpenAI 生成模型聚焦无监督学习

OpenAI 首批研究成果聚焦无监督学习,生成模型如何高效的理解世界 引言:         这篇博文介绍了 OpenAI 的首批研究结果。研究人员分别从事的四个研究项目贯穿了一个共同的主题:在机...

斯坦福大学公开课 :机器学习课程(Andrew Ng)——13、无监督学习:Principal Component Analysis (PCA)

1)问题起源    真实的训练数据总是存在各种各样的问题:     1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多...
  • mmc2015
  • mmc2015
  • 2015年01月06日 15:23
  • 1306

Python机器学习应用 | 无监督学习

1 无监督学习利用无标签的数据学习数据的分布或数据与数据之间的关系被称作无监督学习。 有监督学习和无监督学习的最大区别在于数据是否有标签 无监督学习最常应用的场景是聚类(clustering)和降...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习笔记—-监督学习与无监督学习的异同
举报原因:
原因补充:

(最多只允许输入30个字)