关闭

[leetcode] 377.Combination Sum IV

标签: leetcode
173人阅读 评论(0) 收藏 举报
分类:

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

解题思路:
使用递归的方法做这个题会超时,
因此根据这道题的解法提示选择使用DP的方法,这时我们需要一个一维数组dp大小为target+1,从对应dp[i]存储的是目标i时所得的组合数,然后我们从dp[1]开始计算直到dp[target],每次计算dp[i]时的方法是,从头开始遍历nums数组,如果i>=nums[j], dp[i] = dp[i] + dp[i-nums[j]],
(比如题目中的例子[1,2,3]
计算dp[1] :
从头开始遍历nums
当j =0时 因为1 >= nums[0] 故 dp[1] = dp[1]+dp[1- nums[0]],即
dp[1] = dp[1]+dp[0] = 1;
当j=1 时 因为1 < nums[1] 故 不再运算 故dp[1] = 1;
计算 dp[2]:
当j =0时 因为2 >= nums[0] 故 dp[2] = dp[2]+dp[2- nums[0]],即
dp[2] = dp[2]+dp[1] = 1;
当j =1时 因为2 >= nums[1] 故 dp[2] = dp[2]+dp[2- nums[1]],即
dp[2] = dp[2]+dp[0] = 2;
当j=2 时 因为2 < nums[2] 故 不再运算 故dp[2] = 2;
….
…..
….)

具体代码如下:

public class Solution {
    public int combinationSum4(int[] nums, int target) {
        int result  = 0;

        int[] dp = new int[target+1];
        dp[0] = 1;

        for(int i = 1; i < target + 1; i++) {
            for (int num : nums) {
                if(i >= num){
                    dp[i] = dp[i] + dp[i - num];
                }else{
                    break;
                }
            }
        }

        result = dp[target];
        return result;
    }
}

参考: http://www.cnblogs.com/grandyang/p/5705750.html

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:7001次
    • 积分:662
    • 等级:
    • 排名:千里之外
    • 原创:63篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论