第十二周--项目4应用图的深度优先遍历思路求解问题 (1)(2)

原创 2015年11月18日 20:15:36
/*       
 * Copyright (c++) 2015 烟台大学计算机学院       
 * All right reserved.       
 * 文件名称:houzhui.cpp       
 * 作    者: 商文轲       
 * 完成日期:2015年11月18日       
 * 版 本 号:v1.9        
 *       
*/          

测试图结构及存储

1、是否有简单路径?
问题:假设图G采用邻接表存储,设计一个算法,判断顶点u到v是否有简单路径。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
    int w;
    ArcNode *p;
    visited[u]=1;
    if(u==v)
    {
        has=true;
        return;
    }
    p=G->adjlist[u].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            ExistPath(G,w,v,has);
        p=p->nextarc;
    }
}

void HasPath(ALGraph *G,int u,int v)
{
    int i;
    bool flag = false;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    ExistPath(G,u,v,flag);
    printf(" 从 %d 到 %d ", u, v);
    if(flag)
        printf("有简单路径\n");
    else
        printf("无简单路径\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    HasPath(G, 1, 0);
    HasPath(G, 4, 1);
    return 0;
}

2、输出简单路径
问题:假设图G采用邻接表存储,设计一个算法输出图G中从顶点u到v的一条简单路径(假设图G中从顶点u到v至少有一条简单路径)。

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
    //d表示path中的路径长度,初始为-1
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;  //路径长度d增1,顶点u加入到路径中
    if (u==v)   //找到一条路径后输出并返回
    {
        printf("一条简单路径为:");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
        return;         //找到一条路径后返回
    }
    p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点
    while (p!=NULL)
    {
        w=p->adjvex;    //相邻点的编号为w
        if (visited[w]==0)
            FindAPath(G,w,v,path,d);
        p=p->nextarc;   //p指向顶点u的下一个相邻点
    }
}

void APath(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0
}

int main()
{

    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    APath(G, 1, 0);
    APath(G, 4, 1);
    return 0;
}



总结:在邻接矩阵中简单路径就是从始点到终点中非零元素连成的路径,在邻接表中简单路径是从始点到终点是否有一直有相连的结点。


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

第十二周 项目四 应用图的深度优先遍历思路求解问题

/* *Copyright (c) 2016,烟台大学计算机学院 *All rights reserved. *文件名称:graph.cpp *作者:衣龙川 *完成日期:...

第十二周项目5 迷宫问题之图的深度优先遍历算法求解

问题描述及代码:   #ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED /* *烟台大学计控学院 *作 者:王...

数据结构例程——应用图的深度优先遍历思路求解问题

本文是[数据结构基础系列(7):图]中第4课时[图的邻接矩阵存储结构及算法]的例程。(程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…)1、是否有简单路径? 问题:假设图G...

第十二周项目5-迷宫问题之图深度优先遍历解法

/*   Copyright (c)2016,烟台大学计算机与控制工程学院   All rights reserved.   文件名称:第十二周项目5 - 迷宫问题之图深度优先遍历解法...

第十二周 项目5 -迷宫问题之图深度优先遍历加法

问题描述及代码: /*  Copyright (c)2015,烟台大学计算机与控制工程学院  All rights reserved.  文件名称:迷宫问题之图深度优先遍历解法.cpp  作    ...

【第十二周项目5 - 迷宫问题之图深度优先遍历解法】

问题及代码: /* * Copyright (c) 2016, 烟台大学计算机与控制工程学院 * All rights reserved. * 文件名称:Cube007.cpp * 作 ...

第十二周项目5-迷宫问题之图深度优先遍历解法

/*   Copyright (c)2016,烟台大学计算机与控制工程学院   All rights reserved.   文件名称:第十二周项目5 - 迷宫问题之图深度优先遍历解法...

第十二周 项目5 - 迷宫问题之图深度优先遍历解法

将迷宫中的每一格作为一个顶点,相邻格子可以到达,则对应的顶点之间存在边相连。    例如,下面的迷宫  在使用数组表示时,用0表示格子是空地,用1表示格子处是墙,对应的矩阵是: int mg[M+2...

第十二周项目五迷宫问题之图深度优先遍历解法

#include #include #define MaxSize 100 #define M 4 #define N 4 //以下定义邻接表类型 typedef struct ANo...

第十二周 项目三 图的深度优先遍历

问题描述及代码: #ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED /* *烟台大学计控学院 *作 者:王力源 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)