证明多元可微

1.1阶偏导数存在在该点(x,y)连续,则(多元)函数f在该点可微. 注:但即使偏导数不连续,也可以可微. 2.1定理不好办的时候,用定义求. (注:It's just my point!)...
阅读(6) 评论(0)

定积分的近似计算方法

矩形法:(左中右) 梯形法: 抛物线法:(ax^2+bx+c)...
阅读(17) 评论(0)

下载文件服务器消息响应头

Remote Address:182.92.18.4:80 Request URL:http://dl.download.csdn.net/down11/20170606/a82531253067e06997eeaba5cf55af9d.gz?response-content-disposition=attachment%3Bfilename%3D%22rust-1.17.0-x86_64-pc-...
阅读(59) 评论(0)

多文件上传(HTTP)

Remote Address:121.40.44.206:80 Request URL:http://www.w3school.com.cn/tiy/v.asp Request Method:POST Status Code:200 OK Response Headers view source Cache-control:private Content-Length:0 Content-Type...
阅读(45) 评论(0)

C# StreamWriter 使用注意事项一两点

StreamWriter sw = new StreamWriter(@"newRecord\"+filename,true) 1.如果newRecord文件夹不存在,就会报错.必须要输出文件夹存在才行. 2.文件的名字不能有特殊字符:(冒号)等,如果NotSupportException有可能是文件名不正确....
阅读(57) 评论(0)

拉格朗日乘数法 对y的偏导数的推导 (有点牵强,作为理解吧)

Fy - Fy =0 lambda = - Fy / GyFy - Fy / Gy * Gy =0 Fy + lambda * Gy = 0接下来就可以整合了x y 的通式. H(x , y ) = F(x , y ) + lambda * G(x , y)...
阅读(41) 评论(0)

行列式计算方法(1)

...
阅读(44) 评论(0)

重要的反常积分证明

...
阅读(135) 评论(0)

Linux assembly comiled successfully

.data msg:.string "hello,world!\n" len=.-msg .text .global _start _start: movl $len,%edx movl $msg,%ecx movl $1,%ebx movl $4,%eax int $0x80 movl $0,%ebx movl $1,%eax int $0x80 as -o hello.o ...
阅读(49) 评论(0)

linux compile source to ko(kernel object) successfully!

source: #include #include #include //模块许可证声明(必须) MODULE_LICENSE("Dual BSD/GPL"); //模块加载函数(必须) static int hello_init(void) { printk(KERN_ALERT "Hello World enter\n"); return 0; } //模块卸载函数(必...
阅读(55) 评论(0)

linux shell demos(1)

echo hello,world echo UID:$UID echo HOME:$HOME v1=xiuye v2=10 echo you are $v1,now time is $v2 cmd=`pwd` echo current path = $cmd if date then echo ok fifor v in a b c d e f g h i j k l m n o p q r ...
阅读(75) 评论(0)

Ubuntu14.04.5 安装rpm软件

安装alien软件, sudo apt-get install alien 把rpm转换成.deb文件 sudo alien --scripts *****.rpm 安装deb软件 dpkg -i *****.deb...
阅读(113) 评论(0)

ubuntu 14.04.5 firefox 浏览器flash插件安装

下载flash插件安装包,解压出libflashplayer.so文件, libflashplayer.so移动/拷贝到firefox的plugin目录;  sudo mv libflashplayer.so /usr/lib/mozilla/plugins 运行浏览器就可以了...
阅读(72) 评论(0)

子类之间的成员函数互相调用

#include using namespace std; //#pragma warning(disable:2162) class A{ }; //定义成员函数类型 typedef void (A::*F)(); //强制类型转换 #define Class_Func_Cast(selector) (F)(&selector) //#define str(selector) ##Class_...
阅读(160) 评论(0)

windows下删除不掉文件夹:找不到该项目无法删除文件夹?

rd /S 文件夹名或路径 Successfully!...
阅读(138) 评论(0)

python数组符号重载

class A(object): def __init__(self,a): self.arr = a def __getitem__(self, i): # 调试用的 # print "i := ",i # print "type i := ",type(i) # print "type i := "...
阅读(89) 评论(0)

图像处理灰度化和二值化

# encoding:utf-8 import cv2 img = cv2.imread("../ts.png"); height = img.shape[0] width = img.shape[1] channel = img.shape[2] # 算法 # R=255-R # G=255-G # B=255-B # for i in range(height): # for j ...
阅读(288) 评论(0)

逆元

加法逆元 对每个a belongs to C,existing unique b belongs to C ,  a + b = 0 乘法逆元 对每个a belongs to C,a not eq 0,existing unique b belongs to C, a*b =1...
阅读(87) 评论(0)

rust compiler and tools position in relative paths

The root path like this: ├─bin ├─etc │ └─bash_completion.d ├─lib │ ├─cargo │ └─rustlib │ └─i686-pc-windows-msvc │ └─lib └─share...
阅读(87) 评论(0)

rust函数返回的变量也是一份副本copy?

fn f(x:Vec)->Vec{ let p = &x as *const Vec; println!("f::x address := {:?}",p); x } fn main(){ let x = vec![100]; let p = &x as *const Vec;//注意泛型参数啊!,不写的话要报错额 println!("main::x address := {:?}"...
阅读(52) 评论(0)
385条 共20页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:95874次
    • 积分:3922
    • 等级:
    • 排名:第7597名
    • 原创:285篇
    • 转载:89篇
    • 译文:0篇
    • 评论:17条
    文章分类
    最新评论