(contour)轮廓检测

转载 2012年03月29日 19:17:05
#ifdef _CH_
#pragma package <opencv>
#endif

#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include <math.h>
#endif

#define w 500
int levels = 3;
CvSeq* contours = 0;

void on_trackbar(int pos)
{
    IplImage* cnt_img = cvCreateImage( cvSize(w,w), 8, 3 );
    CvSeq* _contours = contours;
    int _levels = levels - 3;
    if( _levels <= 0 ) // get to the nearest face to make it look more funny
    _contours = _contours->h_next->h_next->h_next;
    cvZero( cnt_img );
    cvDrawContours( cnt_img, _contours, CV_RGB(255,0,0), CV_RGB(0,255,0), _levels, 3, CV_AA, cvPoint(0,0) );
    cvShowImage( "contours", cnt_img );
    cvReleaseImage( &cnt_img );
}

int main( int argc, char** argv )
{
    int i, j;
    CvMemStorage* storage = cvCreateMemStorage(0);
    IplImage* img = cvCreateImage( cvSize(w,w), 8, 1 );

    cvZero( img );

    for( i=0; i < 6; i++ )
    {
        int dx = (i%2)*250 - 30;
        int dy = (i/2)*150;
        CvScalar white = cvRealScalar(255);
        CvScalar black = cvRealScalar(0);

        if( i == 0 )
        {
            for( j = 0; j <= 10; j++ )
            {
                double angle = (j+5)*CV_PI/21;
                cvLine(img, cvPoint(cvRound(dx+100+j*10-80*cos(angle)),
                cvRound(dy+100-90*sin(angle))),
                cvPoint(cvRound(dx+100+j*10-30*cos(angle)),
                cvRound(dy+100-30*sin(angle))), white, 1, 8, 0);
            }
        }

        cvEllipse( img, cvPoint(dx+150, dy+100), cvSize(100,70), 0, 0, 360, white, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+115, dy+70), cvSize(30,20), 0, 0, 360, black, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+185, dy+70), cvSize(30,20), 0, 0, 360, black, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+115, dy+70), cvSize(15,15), 0, 0, 360, white, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+185, dy+70), cvSize(15,15), 0, 0, 360, white, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+115, dy+70), cvSize(5,5), 0, 0, 360, black, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+185, dy+70), cvSize(5,5), 0, 0, 360, black, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+150, dy+100), cvSize(10,5), 0, 0, 360, black, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+150, dy+150), cvSize(40,10), 0, 0, 360, black, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+27, dy+100), cvSize(20,35), 0, 0, 360, white, -1, 8, 0 );
        cvEllipse( img, cvPoint(dx+273, dy+100), cvSize(20,35), 0, 0, 360, white, -1, 8, 0 );
    }

    cvNamedWindow( "image", 1 );
    cvShowImage( "image", img );

    cvFindContours( img, storage, &contours, sizeof(CvContour),
    CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );

    // comment this out if you do not want approximation
    contours = cvApproxPoly( contours, sizeof(CvContour), storage, CV_POLY_APPROX_DP, 3, 1 );

    cvNamedWindow( "contours", 1 );
    cvCreateTrackbar( "levels+3", "contours", &levels, 7, on_trackbar );

    on_trackbar(0);
    cvWaitKey(0);
    cvReleaseMemStorage( &storage );
    cvReleaseImage( &img );

    return 0;
}

#ifdef _EiC
main(1,"");
#endif 
 

相关文章推荐

opencv轮廓(contour)检测

  • 2013年11月25日 11:36
  • 2.96MB
  • 下载

素描令牌:一个中层的学习轮廓和目标检测的表征Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detec

  素描令牌:一个中层的学习轮廓和目标检测的表征 Sketch Tokens: A Learned Mid-level Representation for Contour...

轮廓的查找、表达、绘制、特性及匹配(How to Use Contour? Find, Component, Construct, Features & Match)

http://www.cnblogs.com/xrwang/archive/2010/02/09/HowToUseContour.html 作者:王先荣 前言     轮廓是构成任何一个形状的边...

轮廓的查找、表达、绘制、特性及匹配(How to Use Contour? Find, Component, Construct, Features & Match)

转载:https://my.oschina.net/u/1049180/blog/358189前言 轮廓是构成任何一个形状的边界或外形线。前面讲了如何根据色彩及色彩的分布(直方图对比和模板匹...

opencv 截取轮廓中的图像——实现PS中的抠图功能 Opencv extract area circled by contour

opencv 截取轮廓中的图像——实现PS中利用蒙版抠图的功能(Using Opencv extract area circled by contour) 顺手秀了一把英语~~ 我时常感慨,要是P...
  • sac761
  • sac761
  • 2016年07月16日 23:03
  • 11734

Active Contour Models 主动轮廓模型(snake模型)

主动轮廓模型主要用于解决图像中目标物体的分割操作。理论上是可以解决二维乃至多维的情况,不过最初的模型是在二维图像上建立的。 1 最初的主动轮廓模型 - snake模型:提出了基于能量...

轮廓的查找、表达、绘制、特性及匹配(How to Use Contour? Find, Component, Construct, Features & Match)

前言     轮廓是构成任何一个形状的边界或外形线。前面讲了如何根据色彩及色彩的分布(直方图对比和模板匹配)来进行匹配,现在我们来看看如何利用物体的轮廓。包括以下内容:轮廓的查找、表达方式、组织方式...

Active Contour Models 主动轮廓模型概述

主动轮廓模型主要用于解决图像中目标物体的分割操作。理论上是可以解决二维乃至多维的情况,不过最初的模型是在二维图像上建立的。 1 最初的主动轮廓模型 - snake模型:提出了基于能量...

图像处理系列(1):测地线动态轮廓(geodesic active contour)

动态轮廓是图像分割的一个热点,从早期的snake,就有很多的优化版,测地线动态轮廓(GAC)就是其中之一。总体来说,其摒弃了snake对参数的依赖,并加入了水平集,使得轮廓曲线更贴近目标物的拓扑结构。...

边缘检测contour

  • 2016年07月18日 16:47
  • 1.3MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:(contour)轮廓检测
举报原因:
原因补充:

(最多只允许输入30个字)