堆排序(最小堆)--【算法导论】

原创 2014年01月08日 21:39:06

堆排序的思想在堆排序(最大堆)已做说明,故不再赘述;

总之,思想就是首先进行建堆,由于这是最小堆,故而必须保证父节点都小于孩子节点,若不满足条件,则进行调节;

最后进行堆排序,不断将最小的提取出来,并对剩下的进行调节,使之满足最小堆

故而将最大堆中的判断父节点与孩子大小部分改变即可:

    if (left <= length && A[largest] > A[left])  //左孩子比父节点小
    {
        largest = left;
    }

    if (right <= length && A[largest] > A[right])  //右孩子最小
    {
        largest = right;
    }

这样,就将最大堆改为最小堆了...

完整代码:

#include <iostream>
#include <cstdlib>

using namespace std;

void MinHeapIfy(int A[], int length, int i)  //维护
{
    int left = i * 2 + 1;  //节点i的左孩子
    int right = left + 1; //节点i的右孩子节点
    int largest = i;  //默认父节点

    if (left <= length && A[largest] > A[left])  //左孩子比父节点小
    {
        largest = left;
    }

    if (right <= length && A[largest] > A[right])  //右孩子最小
    {
        largest = right;
    }

    if (i != largest)   //最小值不是父节点
    {
        int temp = A[largest]; //exchange
        A[largest] = A[i];
        A[i] = temp;

        MinHeapIfy(A, length, largest);  //继续维护
    }
}

void BuildMinHeap(int A[], int length)  //建堆
{
    for (int i = (length - 1) / 2; i >= 0; i--)
    {
        MinHeapIfy(A, length, i);
    }
}

void HeapSort(int A[], int length)  //堆排
{
    int temp;

    BuildMinHeap(A, length);      //建堆

    cout<<"建堆情况:";  //
    for(int i = 0; i <= length; i++)
        cout<<A[i]<<"  ";
    cout<<endl;

    for(int i = length; i >= 1;)  //最后一个肯定是最小的
    {
        temp = A[i];    //交换堆的第一个元素和堆的最后一个元素
        A[i] = A[0];
        A[0] = temp;
        i--;        //堆的大小减一
        MinHeapIfy(A, i, 0);  //调堆
    }
}

int main()
{
    int A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7};
    /*int* A = new int[1000];
    A[0] = 0;
    for(int i = 1; i < 1000; i++)
        A[i] = rand()%10000 + 1;*/

    int length = sizeof(A) / sizeof(int); //
    //int length = 1000;
    HeapSort(A, length - 1);

    cout<<"排序结果:";
    for(int i = 0; i < length; i++)  //cout
        cout<<A[i]<<"  ";
    cout<<endl;

    return 0;
}

 

o(∩_∩)o

【数据结构与算法】最小堆 minheap

最小堆与最大堆实现思路一样,只不过顺序不同,这里只记录最小堆。 最小堆的定义是,一棵完全二叉树,每一个节点都大于等于其父节点。完全二叉树是叶子都在最后一层,且尽量靠左。 实现方面可以使用链表或者数...
  • u010900754
  • u010900754
  • 2017年02月01日 06:53
  • 1945

最小堆和最小堆排序

1、原理介绍:百度百科 2、最小堆的构造和添加#include #define N 9 // 最小堆得元素个数int minHeap[N]; // 存放最小堆的数组 int index1 = 0;...
  • sddxqlrjxr
  • sddxqlrjxr
  • 2016年04月13日 14:28
  • 4188

最小堆最大堆算法JAVA

最小堆又叫小顶堆,小顶堆是一棵完全二叉树,满足小顶堆的条件是每个孩子节点的值都大于父节点。大顶堆则相反。 /** * 最小堆 * @author dwl * */ public cl...
  • DWL0208
  • DWL0208
  • 2017年09月11日 21:38
  • 382

算法——TOP K问题最小堆实现

1. 问题背景在实际应用中,我们经常会遇到在一大推数据中找出最大的几个数的问题,也就是我们提到的TOP K问题。K表示需要找出数据的数量2. 解决方案TOP K问题也有多种解决方案,比如排序,最后截取...
  • CYXLZZS
  • CYXLZZS
  • 2016年05月11日 16:46
  • 2140

最大堆与最小堆的实现

最近算法课作业是最小堆,于是便顺便写了这个代码 最(大)小堆的性质: (1)是一颗完全二叉树,遵循完全二叉树的所有性质。 (2)父节点的键值(大于)小于等于子节点的键值 (3)在堆排序中我们通...
  • enjoy5512
  • enjoy5512
  • 2016年03月30日 20:57
  • 1428

堆排序 两种实现(最小堆和最大堆)

堆排序算法是建立在二叉树的堆结构上的,通过交换堆(一维数组)中的元素,并进行上浮或下沉函数运算实现多次调整 堆排序算法的复杂度低,和快速排序属于相同速度级别的一种快速的排序算法 下面以最小堆和最大...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016年03月12日 23:31
  • 1450

堆算法 最大堆 最小堆

  • 2011年08月06日 12:46
  • 2.67MB
  • 下载

关于数组TOP K算法(快排及最小堆方式C代码)

TOP K即返回给定集合最大的K个元素,这个集合有可能很大,十亿,有可能万亿,所以对算法的要求比较高。以下是我的总结: 一、采用快速排序的分治算法思想进行求解: 快速排序的思想是使用一个标...
  • Aiphis
  • Aiphis
  • 2015年10月22日 14:01
  • 509

最小堆最大堆的详细解读

2013-09-13 16:36 16408人阅读 评论(1) 收藏 举报 本文章已收录于: 版权声明:本文为博主原创文章,未经博主允许不得转载。 转自:码农下的天桥 ...
  • qwezhaohaihong
  • qwezhaohaihong
  • 2016年04月03日 16:17
  • 5482

最小堆。最大堆。

最大堆和最小堆是二叉堆的两种形式。 最大堆:根结点的键值是所有堆结点键值中最大者,且每个结点的值都比其孩子的值大。 最小堆:根结点的键值是所有堆结点键值中最小者,且每个结点的值都比其孩子的值小。 ...
  • Genios
  • Genios
  • 2012年11月08日 23:00
  • 34522
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:堆排序(最小堆)--【算法导论】
举报原因:
原因补充:

(最多只允许输入30个字)