堆排序(最小堆)--【算法导论】

原创 2014年01月08日 21:39:06

堆排序的思想在堆排序(最大堆)已做说明,故不再赘述;

总之,思想就是首先进行建堆,由于这是最小堆,故而必须保证父节点都小于孩子节点,若不满足条件,则进行调节;

最后进行堆排序,不断将最小的提取出来,并对剩下的进行调节,使之满足最小堆

故而将最大堆中的判断父节点与孩子大小部分改变即可:

    if (left <= length && A[largest] > A[left])  //左孩子比父节点小
    {
        largest = left;
    }

    if (right <= length && A[largest] > A[right])  //右孩子最小
    {
        largest = right;
    }

这样,就将最大堆改为最小堆了...

完整代码:

#include <iostream>
#include <cstdlib>

using namespace std;

void MinHeapIfy(int A[], int length, int i)  //维护
{
    int left = i * 2 + 1;  //节点i的左孩子
    int right = left + 1; //节点i的右孩子节点
    int largest = i;  //默认父节点

    if (left <= length && A[largest] > A[left])  //左孩子比父节点小
    {
        largest = left;
    }

    if (right <= length && A[largest] > A[right])  //右孩子最小
    {
        largest = right;
    }

    if (i != largest)   //最小值不是父节点
    {
        int temp = A[largest]; //exchange
        A[largest] = A[i];
        A[i] = temp;

        MinHeapIfy(A, length, largest);  //继续维护
    }
}

void BuildMinHeap(int A[], int length)  //建堆
{
    for (int i = (length - 1) / 2; i >= 0; i--)
    {
        MinHeapIfy(A, length, i);
    }
}

void HeapSort(int A[], int length)  //堆排
{
    int temp;

    BuildMinHeap(A, length);      //建堆

    cout<<"建堆情况:";  //
    for(int i = 0; i <= length; i++)
        cout<<A[i]<<"  ";
    cout<<endl;

    for(int i = length; i >= 1;)  //最后一个肯定是最小的
    {
        temp = A[i];    //交换堆的第一个元素和堆的最后一个元素
        A[i] = A[0];
        A[0] = temp;
        i--;        //堆的大小减一
        MinHeapIfy(A, i, 0);  //调堆
    }
}

int main()
{
    int A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7};
    /*int* A = new int[1000];
    A[0] = 0;
    for(int i = 1; i < 1000; i++)
        A[i] = rand()%10000 + 1;*/

    int length = sizeof(A) / sizeof(int); //
    //int length = 1000;
    HeapSort(A, length - 1);

    cout<<"排序结果:";
    for(int i = 0; i < length; i++)  //cout
        cout<<A[i]<<"  ";
    cout<<endl;

    return 0;
}

 

o(∩_∩)o

相关文章推荐

【数据结构与算法】最小堆 minheap

最小堆与最大堆实现思路一样,只不过顺序不同,这里只记录最小堆。 最小堆的定义是,一棵完全二叉树,每一个节点都大于等于其父节点。完全二叉树是叶子都在最后一层,且尽量靠左。 实现方面可以使用链表或者数...

最小堆和最小堆排序

1、原理介绍:百度百科 2、最小堆的构造和添加#include #define N 9 // 最小堆得元素个数int minHeap[N]; // 存放最小堆的数组 int index1 = 0;...

堆排序原理及算法实现(最大堆)

堆排序        堆排序是利用堆的性质进行的一种选择排序。下面先讨论一下堆。 1.堆   堆实际上是一棵完全二叉树,其任何一非叶节点满足性质:   Key[i]=Key[2i+1]&&ke...

最小堆最大堆算法JAVA

最小堆又叫小顶堆,小顶堆是一棵完全二叉树,满足小顶堆的条件是每个孩子节点的值都大于父节点。大顶堆则相反。 /** * 最小堆 * @author dwl * */ public cl...
  • DWL0208
  • DWL0208
  • 2017年09月11日 21:38
  • 141

【算法】堆,最大堆(大顶堆)及最小堆(小顶堆)的实现

此坑待埋。 点击打开漫谈经典排序算法:一、从简单选择排序到堆排序的深度解析链接 白话经典算法系列之七 堆与堆排序 二叉排序树与二叉堆 下面来说一说具体算法。...
  • cdnight
  • cdnight
  • 2013年09月13日 16:36
  • 53892

最小堆最大堆的详细解读

2013-09-13 16:36 16408人阅读 评论(1) 收藏 举报 本文章已收录于: 版权声明:本文为博主原创文章,未经博主允许不得转载。 转自:码农下的天桥 ...

【啊哈!算法】算法12:堆——神奇的优先队列(下)

接着上一Pa说。就是如何建立这个堆呢。可以从空的堆开始,然后依次往堆中插入每一个元素,直到所有数都被插入(转移到堆中为止)。因为插入第i个元素的所用的时间是O(log i),所以插入所有元素的整体...
  • ahalei
  • ahalei
  • 2014年06月17日 09:35
  • 1971

红黑树 vs 最小堆

出处:http://blog.sina.com.cn/s/blog_56e6a0750101b0fo.html 不谈内存,从算法上来讲 红黑树插入是最坏情况要比较2logN次(最高的高度)外加...

最大堆、最小堆

定义: 最大堆:根结点的键值是所有堆结点键值中最大者的堆。 最小堆:根结点的键值是所有堆结点键值中最小者的堆。 维基百科链接 C++中的STL里边定义的堆操作: ...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:堆排序(最小堆)--【算法导论】
举报原因:
原因补充:

(最多只允许输入30个字)