关闭

Very Deep Convolutional Networks For Large-Scale Image Recognition论文翻译总结

标签: vggnet网络论文总结
1466人阅读 评论(0) 收藏 举报
分类:

VGGnet

论文:《Very Deep Convolutional Networks For Large-Scale Image Recognition


1.     概述

本文是牛津大学 visual geometry group(VGG)Karen Simonyan 和AndrewZisserman 于2014年撰写的论文,主要探讨了网络深度对于网络的重要性,建立了16-19层的深度网络获得了Imagenet分类的冠军。

2.     网络架构

其网络架构如图1所示。其核心是在卷积层使用了比较小的3*3得卷积核以及较小的步长

池化层都是用了最大池化,size为2*2,stride也是2。激活函数使用了ReLU。

图1 网络架构表

3.     训练

训练使用了mini-Batchgradient descend算法,其中Minibatch=256,其它的都和Alexnet网络差不多一样。作者发现,尽管VGG比Alex-net有更多的参数,更深的层次;但是VGG需要很少的迭代次数就开始收敛。这是因为

1,深度和小的filter尺寸起到了隐式的规则化的作用

2,一些层的pre-initialisation

pre-initialisation:

网络A的权值W是满足(0,0.01)的高斯分布,bias为0;由于存在大量的ReLU函数,不好的权值初始值对于网络训练影响较大。为了绕开这个问题,作者现在通过随机的方式训练最浅的网络A;然后在训练其他网络时,把A的前4个卷基层(感觉是每个阶段的以第一卷积层)和最后全连接层的权值当做其他网络的初始值,未赋值的中间层通过随机初始化。

把原始 image缩放到最小边S>224;然后在full image上提取224*224片段,进行训练。

方法1:

单一scale上训练,固定S大小,论文实验室中选择了两个固定的大小一个是256,一个是384。

方法2:

在multi scale上训练,类似OverFeat测试时使用的方法,在[Smin,Smax]scale上,随机选取一个scale,smin=256,smax=512。然后提取224*224的图片,训练一个网络。这种方法类似图片尺寸上的数据增益。

 

0
0
查看评论

2014-VGG-《Very deep convolutional networks for large-scale image recognition》翻译

原文:http://xueshu.baidu.com/s?wd=paperuri%3A%282801f41808e377a1897a3887b6758c59%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=...
  • wangsidadehao
  • wangsidadehao
  • 2017-01-10 11:34
  • 3123

[深度学习] Very Deep Convolutional Networks for Large-Scale Image Recognition(VGGNet)阅读笔记

先发发牢骚,最近的日子就是“准备数据集——想改进方法——跑实验——实验结果不好”的循环,熬得一点心情都没有了= = 好了,废话不多说了,这篇VGGNet的论文是两三周之前看的了,而且最近撘的网络结构跟VGGNet很相像,就拿出来复习一下吧。 这篇论文是牛津大学的几个人做出来,在ILSVRC 2014...
  • lhanchao
  • lhanchao
  • 2017-03-20 16:03
  • 3065

深度学习之解读VGGNet

为什么提出 提出的背景 基本思想及其过程为什么提出提出的背景 提出目的即为了探究在大规模图像识别任务中,卷积网络深度对模型精确度有何影响。  这个网络的结构用的都是特别小的3x3的卷积模版(stride:1,padding:1),以及5个2x2的池化层(stride:2),将卷积层的深度提升到了1...
  • qq_31531635
  • qq_31531635
  • 2017-05-04 15:15
  • 5432

LeNet论文的翻译与CNN三大核心思想的解读

LeNet论文的翻译与CNN三大核心思想的解读
  • qianqing13579
  • qianqing13579
  • 2017-05-01 23:20
  • 4627

Very Deep Convolutional Networks For Large-Scale Image Recognition论文翻译总结

VGGnet 论文:《Very Deep Convolutional Networks For Large-Scale Image Recognition》 1.     概述 本文是牛津大学 visual geometry group(VGG)Karen...
  • xjz18298268521
  • xjz18298268521
  • 2016-08-31 09:40
  • 1466

SequenceNet论文翻译

论文地址:SqueezeNet 论文翻译:木凌 时间:2016年11月。 文章连接:http://blog.csdn.net/u0145407171 引言和动机最近对深卷积神经网络(CNN)的研究集中在提高计算机视觉数据集的准确性。 对于给定的精度水平,通常存在实现该精度水平的多个CNN架...
  • u014540717
  • u014540717
  • 2016-11-29 18:44
  • 2819

Very Deep Convolutional Networks for Large-Scale Image Recognition—VGG论文翻译—中英文对照

Very Deep Convolutional Networks for Large-Scale Image Recognition—VGG论文翻译—中英文对照
  • Quincuntial
  • Quincuntial
  • 2017-08-18 19:31
  • 1245

Very Deep Convolutional Networks for Large-Scale Image Recognition

这篇论文是今年9月份的论文[1],比较新,其中的观点感觉对卷积神经网络的参数调整大有指导作用,特总结之。关于卷积神经网络(Convolutional Neural Network, CNN),笔者后会作文阐述之,读者若心急则或可用谷歌百度一下。
  • xinzhangyanxiang
  • xinzhangyanxiang
  • 2014-10-02 14:45
  • 10503

AlexNet论文翻译与解读

AlexNet论文翻译与解读
  • qianqing13579
  • qianqing13579
  • 2017-05-08 00:30
  • 2179

SequenceNet论文翻译

论文地址:SqueezeNet  论文翻译:木凌  时间:2016年11月。  文章连接:http://blog.csdn.net/u014540717 1 引言和动机 最近对深卷积神经网络(CNN)的研究集中在提高计算机视觉数据集的准确性。 对于给定...
  • u014696921
  • u014696921
  • 2017-05-20 15:40
  • 545
    个人资料
    • 访问:131285次
    • 积分:1571
    • 等级:
    • 排名:千里之外
    • 原创:37篇
    • 转载:9篇
    • 译文:2篇
    • 评论:150条
    最新评论