回归和分类是机器学习算法所要解决的两个主要问题。分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题。但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出。
那么,什么是线性回归,什么是非线性回归呢?
线性回归与非线性回归
前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数。也就是每一个基本函数前面都有一个权值来调和自己对于整个模型函数的重要性。然后,非线性函数就是各个基本函数并不是以线性加权形式结合。在线性回归模型里面有一大类,叫广义线性模型GLM,这里先不讲。
线性回归模型中的各个基函数如何选择,模型的函数就会有不同的结果。而且基函数的选择有时可以将线性模型扩展到一般的非线性形式,只要你将基函数定义为一个非线性函数就好啦。虽然通常我们都是将每个基函数定义为输入向量数据每一维特征的一次方函数,也就是输入数据的每一维特征取值,但是我们仍然有必要聊聊其他的情况,这样才能感觉到线性回归的强大。
- 首先,假设模型由N个基函数线性加权构成,我们可以在第一个取输入x的一次方,第二个取x的二次方,。。。第N个取N次方,这样模型就成为了x的多项式形式。这样会导致一个问题,每一个基函数的输入特征值会影响到其他基函数的值