LeetCode || Majority Element

寻找众数的五大高效算法
本文介绍五种用于寻找数组中出现次数超过一半的元素(即众数)的算法,包括循环比较、排序、标记计数、位运算及改进位运算方法。这些算法在时间复杂度与效率上各有特点。

方法一:

按照顺序循环,如果两个元素不相等,则删除这两个元素。则剩下的为出现大于n/2次的那个元素。

耗时:144ms。


class Solution {
public:
    int majorityElement(vector<int>& nums) {
 
       int i = 1;
        
        while(nums.size() > 1 && i < nums.size())
        {
			if(i < 1)
			{
				i = 1;
				continue;
			}
            if(nums[i-1] != nums[i])
            {
                nums.erase(nums.begin() + i);
                nums.erase(nums.begin() + i-1);
				i--;
            }
            else
            {
                i++;
            }
        }
        
        return nums[0];
    }
};

解法2:

使用sort的解决方法,耗时48ms。

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        return nums[nums.size()/2];
    }
};

方法三:不进行实质的删除操作,只是做mark而已。

耗时20ms。

class Solution {
public:
    int majorityElement(vector<int>& nums) {
 
        int i = 1;
        int curr = nums[0];
        int count = 1;//表示当前数出现的次数
        while(i < nums.size())
        {
            if(nums[i] == curr)//如果与当前数据相同,则计数器加1
            {
                count++;
            }
            else
            {
                count--; //不相等,计数器减1
                if(count == 0)//当这个值与之前不相同的抵消后,则应该对curr重新赋值
                {
                    i++;//直接让其等于下一个,这句话可要可不要
                    curr = nums[i];
                    count++;
                }
            }
            i++;
        }
        return curr;
    }
};

方法四:位运算方法,耗时40ms。时间复杂度: O(32N)

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        
        int flag = 1;
        vector<int> v;
        while(flag)//统计每一位中1的个数
        {
            int count = 0;
            for(int i = 0;i<nums.size();i++)
            {
                if(flag & nums[i])
                    count++;
            }
            
            if(count > nums.size()/2)//如果出现的个数大于n/2,则说明该位是出现较多次数的
                v.push_back(1);
            else
                v.push_back(0);
            
            flag = flag << 1;
        }
        
        int r = 0;
        for(int i = v.size()-1;i>=0;i--)//按位反过来保存
        {
            r = r << 1;
            if(v[i])
                r+=1;
        }
        return r;
    }
};

方法五:方法四的另一种实现方法。耗时40ms.

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        
        int flag = 0;
        vector<int> v;
        int r = 0;
        while(flag<32)//统计每一位中1的个数
        {
            int count = 0;
            for(int i = 0;i<nums.size();i++)
            {
                if((nums[i] >> flag)&1)
                    count++;
            }
            
            if(count > nums.size()/2)//如果出现的个数大于n/2,则说明该位是出现较多次数的
                r|=(1<<flag);
            
            flag++;
        }
        
        return r;
    }
};


【多种改进粒子群算法进行比较】基于启发式算法的深度神经网络卸载策略研究【边缘计算】(Matlab代码实现)内容概要:本文围绕“基于多种改进粒子群算法比较的深度神经网络卸载策略研究”展开,聚焦于边缘计算环境下的计算任务卸载优化问题。通过引入多种改进的粒子群优化(PSO)算法,并与其他启发式算法进行对比,旨在提升深度神经网络模型在资源受限边缘设备上的推理效率与系统性能。文中详细阐述了算法设计、模型构建、优化目标(如延迟、能耗、计算负载均衡)以及在Matlab平台上的代码实现过程,提供了完整的仿真验证与结果分析,展示了不同算法在卸载决策中的表现差异。; 适合人群:具备一定编程基础和优化算法知识,从事边缘计算、人工智能部署、智能优化等相关领域的科研人员及研究生;熟悉Matlab仿真工具的开发者。; 使用场景及目标:①研究边缘计算环境中深度学习模型的任务卸载机制;②对比分析多种改进粒子群算法在复杂优化问题中的性能优劣;③为实际系统中低延迟、高能效的AI推理部署提供算法选型与实现参考; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注算法实现细节与参数设置,通过复现仿真结果深入理解不同启发式算法在卸载策略中的适用性与局限性,同时可拓展至其他智能优化算法的对比研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值