算法导论 基数排序 习题8.3-4

问题: 在O(n)时间内,对0到n^3-1区间内的n个整数进行排序

思路:线性时间,考虑使用基数排序,基数排序时间为,要使时间为O(n),,即k=n, 即把每个整数写成3位n进制数

代码:

#include<iostream>
#include<stdlib.h>
#include<time.h>
#include<math.h>

using namespace std;

//基于计数排序的n个数根据第i为排序
void CountSort(int *A, int *B,int n, int k)
{
	int *C=new int [n+1];//存储按n个数第i位(数组B)排序得到的A
	int *D=new int [k+1];	
	for(int p=0;p<k+1;p++)//一定要初始化
		D[p]=0;
	for(int i=0;i<n;i++)
		++D[B[i]];	
	for(int j=1;j<k+1;j++)//[0,...k]
		D[j]=D[j]+D[j-1];
	for(int l=n-1;l>
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这是两个问题。让我分别回答。 --- 对于习题24.2-4,我们需要证明:对于有向图$G=(V,E)$,从源点$s$到任何其他点$v\in V$的最短路径上最多可以包含$|V|-1$条边。 我们可以使用反证法来证明这个结论。假设存在一条从$s$到$v$的最短路径包含了$|V|$条边。由于这是一条简单路径,所以它经过了$|V|$个顶点中的所有顶点。因此,这个路径形成了一个简单环。我们可以从这个简单环中删除任意一条边,得到一条从$s$到$v$的路径,路径长度比原来的最短路径长度更小,这与原来的最短路径的假设相矛盾。因此,假设不成立,结论得证。 --- 对于习题24.3-6,我们需要证明:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。 我们可以使用反证法来证明这个结论。假设存在一个从$s$到$v$的最短路径上存在一个负权重环。由于负权重环的存在,我们可以通过不断绕这个环走来无限制地减小路径长度,因此不存在从$s$到$v$的最短路径。但是,Bellman-Ford算法会在第$|V|$次松弛操作之前终止,并且在第$i$次松弛操作之后,算法会计算出从$s$到所有距离$s$不超过$i$的顶点的最短路径。因此,我们可以得出结论:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值