使用IBM heapAnalyzer分析内存泄露的原因

大家在开发J2EE应用时可能经常碰到OOM的问题。出现这种问题的原因就是内存消耗殆尽,创建新的对象时没有可分配的内存了。为了找到真正导致OOM的原因,这里将使用IBM heapAnalyzer工具进行定位。

首先要知道,IBM heapAnalyzer是通过分析OOM后的Java heap dump文件的,通过对dump文件的分析找到内存可能泄露的点。了解这个之后,我们首先需要生成dump文件,这里我可以编写一个小程序,如:

public class Test {
 /**
  * @param args
  */
 public static void main(String[] args) {
  List<String> list = new ArrayList<String>();
  //10M的PermSize在integer范围内足够产生OOM了
  int i = 0;
  while (true) {
   list.add(new String("test"));  }
 }

}

运行该程序时设置JVM的堆内存的极限值为10M(-Xmx10m),并加上-XX:+HeapDumpOnOutOfMemoryError,此参数是帮助生成dump文件,程序启动后直到抛出OOM异常。异常抛出后,在程序的classpath下会生成以一个以.hprof结尾的文件,如:java_pid4504.hprof,这就是我们需要的dump文件。

dump文件有了,现在我们使用heapAnalyzer对该dump进行分析,首先需要安装heapAnalyzer,安装比较简单,只要下载下来直接解压即可,我这里使用的是ha414.jar,要求JDK1.6,设置JAVA_HOME后,通过命令后启动heapAnalyzer,如:java -jar ha414.jar。

HeapAnalyzer启动后的界面如下:

HeapAnalyzer启动后,通过菜单File->Open打开生成的dump文件java_pid4504.hprof。

dump文件加载后,通过菜单Analysis->Tree View展现出来。

通过dump信息分析内存泄漏的对象。主要思路是堆内存占用比例,比例越大说明堆内存消耗越多。

这个例子很简单,通过如下图很快就可定位出内存泄漏的地方。

这里可以看到java/util/ArrayList对象占用堆内容最大,达到93%。当然这里并不是说ArrayList存在问题,而是说ArrayList占用的堆内存较多,不正常,至于为啥会不正常,这还依赖于该对象所处的程序块相关,找到这点问题就解决一大半了。

最后需要在程序中找到使用该对象的地方,再分析程序,确定产生内存泄漏的原因。


转自: http://www.51testing.com/?uid-412661-action-viewspace-itemid-241471
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值