隐马尔可夫模型(HMM) - 2 - 概率计算方法

原创 2016年05月17日 14:24:31

声明:

         1,本篇为个人对《2012.李航.统计学习方法.pdf》的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址)。

         2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面。

         3,如果有内容错误或不准确欢迎大家指正。

         4,如果能帮到你,那真是太好了。

 

         本章介绍隐马尔可夫模型中概率计算问题的算符。

         计算观测序列概率P(O|λ)的算法包括前向算符和后向算法,不过在此之前先介绍下概念上可行但计算上不可行的直接计算法。


直接计算法

         给定模型λ= (A, B,π)和观测序列O = (o1,o2, ..., oT),计算测序列O出现的概率P(O|λ)。最直接的方法是按概率功率直接计算。

         思想

                   通过列举所有可能的长度为T的状态序列I = (i1,i2, ..., iT),求各个状态序列I与观测序列O = (o1, o2, ..., oT)的联合概率P(O,I|λ),然后对所有可能的状态序列求和,得到P(O|λ)。

         过程

                   1,状态序列I = (i1,i2, ..., iT)的概率是

                             

                            即:状态1的概率*状态1转到状态2的概率*...*状态T-1转到状态T的概率

                            PS:上式中的π对应初始概率分布,aij对应状态转移概率分布的矩阵,若看不懂上面的内容,则请对照着“隐马尔可夫模型(HMM) - 1 - 基本概念”中的这两个概念看。

                   2,对固定的状态序列I =(i1, i2, ..., iT),观测序列O = (o1, o2, ..., oT)的概率是

                           

                            即:第一个观测的概率*第二个观测的概率*...*第T个观测的概率

                   3,O和I同时出现的概率为

                           

                            PS:这个利用了条件概率公式

                   4,对所有的状态序列I求和,得到观测序列O的概率P(O|λ),即

                            1式)

         但是1式)的计算量很大,是O(TNT)阶,这种算法不可行。

         下面介绍计算观测序列概率P(O|λ)的有效方法:前向-后向算法。

前向算法

         首先定义前向概率

 定义(前向概率)

         给定隐马尔可夫模型λ,定义到时刻t部分观测序列为o1, o2, ..., ot,且状态为qi的概率为前向概率,记做

                            at(i)= P(o1, o2, ..., ot, it = qi |λ)

         举个例子:

                   从A、B这两个硬币中随机拿一个投掷看正反面,A、B硬币抓取的概率一样,即都是0.5,但因为A、B的材质原因导致这两个硬币正面向上的概率是0.6,反面向上的概率是0.4。

                   因此前向概率

                            a4(2)= P(正, 正, 反, 正, i4 = q2|λ)

                   就表示“到时刻4时的观测序列为 o1=正,o2=正,o3=反,o4=正,且第四次投掷的硬币为硬币B(假设q1=硬币A,q2=硬币B)的概率”

        

         在知道了前向概率的定义后就可以递推的求前向概率at(i)及观测序列概率P(O|λ)。

 算法(观测序列概率的前向算法)

         输入:隐马尔科夫模型λ,观测序列O;

         输出:观测序列概率P(O|λ)

         过程

                 

         解释

                   步骤1初始化前向概率,即获得第一个状态和第一个观测的概率,即是初始时刻的状态qi和观测o1的联合概率。又因为达到初始时刻状态qi的概率是πi,根据初始状态qi而产生的观测o1的概率是bi(o1),于是有了10.15式。

                   步骤2是前向概率的递推公式,计算到时刻t+1部分观测序列为o1, o2, ..., ot, ot+1且在t+1时刻处于状态qi的前向概率。

                                     如下图所示:

                                    

                            在10.16式的方括弧里,at(j)表示到时刻t观测到o1,o2, ..., ot并在时刻t处于状态qj的前向概率,那么乘积at(j)aji就是到时刻t观测到o1, o2,..., ot并在时刻t处于状态qj而时刻t+1到达状态qi的联合概率。对这个乘积在时刻t的所有可能的N的状态qj求和,其结果就是到时刻t观测为o1, o2, ..., ot并在时刻t+1处于状态qi的联合概率。

                                     有点绕?

                                     其实是这样,“at(j)aji是到时刻t观测到o1, o2,..., ot并在时刻t处于状态qj而时刻t+1到达状态qi的联合概率”这个没问题吧(有问题我就没办法了..你在多读几遍这句话好好想想),但在时刻t+1之前到底是哪个状态谁也不知道,可能是状态q1,可能是状态q2,可能是状态qj,也可能是状态qN,那我要把所有的可能性包括在内,于是乎对所有的at(j)aji求和,其中j = 1, 2, ..., N,于是就有了方括弧里的内容。

                            方括弧里的值也观测概率bi(ot+1)的乘积就是时刻t+1观测到o1,o2, ..., ot, ot+1并在时刻t+1处于状态qi的前向概率at+1(i)。

                   步骤3给出P(O|λ)的计算公式,因为

                                     aT(i)= P(o1, o2, ..., oT, iT = qi|λ)

                            表示到达时刻T观测到o1, o2,..., oT并在时刻T处于状态qi的前向概率,于是对所有的状态求和即10.17式,就是观测序列概率P(O|λ)的计算公式了。

 前向算法高效的关键

         前向算法高效的关键是其局部计算前向概率,然后利用路径结构将前向概率“递推”到全局,得到P(O|λ)。

         具体地

                   在时刻t=1,计算a1(i)的N个值(i = 1, 2,..., N);

                   在时刻t = 1, 2,..., T-1,计算at+1(i)的N个值(i = 1, 2, ..., N),而且每个at+1(i)的计算利用前一时刻的N个at(j)。

         减少计算量的原因在于每一次计算直接饮用前一时刻的计算结果,避免重复计算。这样前向概率计算P(O|λ)的计算量是O(N2T)阶的,而不是直接计算的O(TNT)阶。

 例子

         考虑盒子和球模型λ=(A, B,π),状态集合Q = {1, 2, 3},观测集合V = {红,白},

                  

         设T=3,O=(红,白,红),试用前向算法计算P(O|λ)

         解

                  


后向算法


 定义(后向概率)

         给定隐马尔可夫模型λ,定义在时刻t状态为qi的条件下,从t+1到T的部分观测序列为ot+1, ot+2, ..., oT的概率为后向概率,记做

                   βt(i) = P(ot+1, ot+2, ..., oT| it= qi,λ)

         可以用递推方法求得后向概率βt(i)及观测序列概率P(O|λ)。

 算法(观测序列概率的后向算法)

         输入:隐马尔可夫模型λ,观测序列O;

         输出:观测序列概率P(O|λ)

         过程

                  

         解释

                   步骤1初始化后向概率,对最终时刻的所有状态qi规定βt(i) = 1。

                   步骤2是后向概率的递推公式。

                            如下图所示

                                    

                            为了计算在时刻t状态为qi条件下时刻t+1之后的观测序列为ot+1,ot+2, ..., oT的后向概率βt(i),只需考虑在时刻t+1所有可能的N个状态qj的转移概率(即aij项),以及在此状态下的观测ot+1的观测概率(即bj(ot+1)项),然后概率状态qj之后的观测序列的后向概率(即βt+1(i)项)。

                   步骤3求P(O|λ)的思路与步骤2一直,只是用初始概率πi代替转移概率。


P(O|λ)的关于前向-后向算法的统一写法

         利用前向概率和后向概率的定义,可以将观测序列概率P(O|λ)统一写成

                  

         此式当t=1和t=T-1时,分别为10.17式和10.21式。


一些概率与期望值的计算

         利用前向概率和后向概率,可以得到关于每个状态和两个状态概率的计算公式。

         1,给定模型λ和观测O,在时刻t处于状态qi的概率,记

                           

                   可通过前项后项概率计算。事实上,

                           

                   由前向概率at(i)和后向概率βt(i)定义可知:

                            at(i)βt(i) = P(it = qi, O |λ)

                   于是得到

                           

         2,给定模型λ和观测O,在时刻t处于状态qi且在时刻t+1处于状态qj的概率,记

                           

                   可通过前项后项概率计算:

                           

                   而

                           

                   所以

                           

         3,将γt(i)和ξt(i, j)对各个时刻t求和,可以得到一些有用的期望值:

                   a,在观测O下状态i出现的期望值

                           

                   b,在观测O下由状态i转移的期望值

                           

                   c,在观测O下由状态i转移到状态j的期望值

                            

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

训练中文分词HMM模型,得到A(状态转移矩阵)、B(混淆矩阵)、Pi(初始状态概率)

#!F://python # page coding=utf-8 # 本代码用来训练中文分词HMM模型,得到A矩阵(状态转移矩阵)、B矩阵(混淆矩阵)、Pi向量(初始概率向量)并且用pickle 将他...

隐马尔科夫模型详解

转载请注明地址(http://blog.csdn.net/xinzhangyanxiang/article/details/8522078) 学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得...
  • sight_
  • sight_
  • 2015年01月30日 15:24
  • 15550

【机器学习】隐马尔可夫模型(上)——定义及相关概率计算

隐马尔可夫模型(Hidden Markov Model, HMM)是可用于标注问题(即输入输出都是离散序列的监督学习问题)的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型。...

马尔可夫模型的一步转移概率矩阵Java代码实现

一步转移概率的Java代码实现,算法解释马尔可夫链 注:此Java代码只实现了状态转移的个数至于概率很容易求得,具体做法可参考上面的链接或浙大概率论与数理统计第四版第十三章马尔可夫链 附有运行结果截...

第十二集 混合高斯模型和EM算法

  • qrlhl
  • qrlhl
  • 2015年09月29日 10:03
  • 765

文本主题特征抽取实践与构想

文本主题特征抽取实践与构想
  • jdbc
  • jdbc
  • 2015年12月26日 13:22
  • 939

ML--HMM(隐马尔可夫模型及python的实现2)

1.HMM的应用1,这个代码不知道出处了,若有侵权请联系本文作者删除,注释为本人所加。2.对基本的HMM需要进一步了解的,请戳这里3.下面是HMM代码的解释之一# _*_ coding:utf-8 _...

隐马尔可夫模型(HMM) - 3 - 学习方法

声明:          1,本篇为个人对《2012.李航.统计学习方法.pdf》的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址)。          2,由于本人在学习初始时有很多数...

HMM隐马尔可夫模型经典文献

  • 2010年08月24日 16:44
  • 3.29MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:隐马尔可夫模型(HMM) - 2 - 概率计算方法
举报原因:
原因补充:

(最多只允许输入30个字)