MxNet系列——model_zoo——index

翻译 2017年02月08日 15:55:44

MXNet的模型园地

MXNet 突出了学术论文中报告的最先进模型的快速实现。我们的模型园地(Modle Zoo)包含了完整的模型,Python脚本,预训练的权重和如何进行微调的说明文档。

如何贡献一个预训练的模型 (应包含什么)

提交一个包含下列内容的 Pull 请求:
* Gist 日志
* .json 格式的模型定义文件
* 模型参数文件
* Readme 文件 (细节见下面)

Readme 文件应该包含:
* 模型的位置和访问命令 (wget)。
* 确认你训练的模型满足原始论文中发表的精度。
* 关于如何使用该模型的逐步说明。
* 引用模型参考的任何其它文档或 arxiv 论文。

卷积神经网络

卷积神经网络对于很多图像和视频处理问题来说,是最先进的架构。一些可用的数据库有:

  • ImageNet: 100万张图像构成的语料库,分成1000类。
  • CIFAR10: 来自10个类别的60,000 张自然图像 (尺寸:32 x 32)。
  • PASCAL_VOC: ImageNet的一个带目标边界框的子集。
  • UCF101: 来自101个行为类别的13,320 个视频。
  • Mini-Places2: Subset of the Places2数据集的子集。包含来自100个场景的 100,000 张图像
  • ImageNet 11k
  • Places2:Places365-Standard 包含来自365个场景类别的160万张训练图像,它被用来训练卷积神经网络:Places365。验证集中,每一类有50张图像;测试集中,每一类有900张图像。和Places365-Standard的训练集相比, Places365-Challenge的训练集包括620万额外张图像, Places365 challenge 2016 总共大概有800万张训练图像。验证集和测试集与 Places365-Standard 相同。
Model Definition Dataset Model Weights Research Basis Contributors
CaffeNet ImageNet Krizhevsky, 2012 @..
Network in Network (NiN) CIFAR-10 Lin et al.., 2014
SqueezeNet ImageNet Iandola et al.., 2016
VGG16 ImageNet Simonyan et al.., 2015
VGG19 ImageNet Simonyan et al.., 2015
Inception v3 w/BatchNorm ImageNet Szegedy et al.., 2015
ResidualNet152 ImageNet He et al.., 2015
Fast-RCNN PASCAL VOC Girshick, 2015
Faster-RCNN PASCAL VOC Ren et al..,2016
Single Shot Detection (SSD) PASCAL VOC Liu et al.., 2016

递归神经网络 (包括LSTMs)

MXNet 支持循环神经网络(recurrent neural networks, RNNs),也支持长短时记忆网络( Long short-term memory, LSTM)和 GRU网络(Gated Recurrent Units)。一些可用的数据集有:

  • Penn Treebank (PTB): 文本语料库,大约有100万个单词。词汇量限制在10,000个单词。任务是预测下一个【downstream】单词/字符。
  • Shakespeare: 来自莎士比亚作品的复杂文本。
  • IMDB reviews: 25,000个视频评论,标签为好/坏。
  • Facebook bAbI: 20个问答任务的数据集,每一个有1,000个训练样本。
  • Flickr8k, COCO: 带标题/句子的图像。Flickr8k包括 8,092个图像,大约40,000个标注(使用AmazonTurkers标注)。 COCO包含328,000个图像,每一个有5个句子。COCO也包含使用分割算法标记的物体信息。
Model Definition Dataset Model Weights Research Basis Contributors
LSTM - Image Captioning Flickr8k, MS COCO [Vinyals et al.., 2015](https://arxiv.org/pdf/ 1411.4555v2.pdf) @…
LSTM - Q&A System bAbl Weston et al.., 2015
LSTM - Sentiment Analysis IMDB Li et al.., 2015

生成对抗网络(Generative Adversarial Networks)

Model Definition Dataset Model Weights Research Basis Contributors
DCGANs ImageNet Radford et al..,2016 @…
Text to Image Synthesis MS COCO Reed et al.., 2016
Deep Jazz Deepjazz.io

其它网络模型

MXNet 支持多种模型,不限于经典的CNN和LSTM。包括深度增强学习,线性模型等。下面是一些可用的的数据集和资源:

  • Google News: 一个包括300万单词的的文本语料库(为word2vec构建)。
  • MovieLens 20M Dataset: 来自2.7万个电影和13.8万个用户的 2000万个评分和46.5万个标签。 Includes tag genome data with 12 million relevance scores across 1,100 tags.
  • Atari Video Game Emulator: Stella是一个多平台的 Atari 2600 VCS 仿真器 (GPL)。
Model Definition Dataset Model Weights Research Basis Contributors
Word2Vec Google News Mikolov et al.., 2013 @…
Matrix Factorization MovieLens 20M Huang et al.., 2013
Deep Q-Network Atari video games Minh et al.., 2015
Asynchronous advantage actor-critic (A3C) Atari video games Minh et al.., 2016

MXNet的Model API

MXNet的API mxnet里面的model API不是真的API,它只不过是一个对ndarray的一个封装,使其更容易使用。 训练一个模型 为了训练一个模型,你需要遵循以下两步,第一步是使用sym...
  • qq_25491201
  • qq_25491201
  • 2016年05月12日 22:30
  • 7528

Caffe Model Zoo

Caffe Model Zoo 许多的研究者和工程师已经创建了Caffe模型,用于不同的任务,使用各种种类的框架和数据。这些模型被学习和应用到许多问题上,从简单的回归到大规模的视觉分类,到Siame...
  • w526482656
  • w526482656
  • 2015年10月20日 15:36
  • 5226

【神经网络与深度学习】Caffe Model Zoo许多训练好的caffemodel

Caffe Model Zoo 许多的研究者和工程师已经创建了Caffe模型,用于不同的任务,使用各种种类的框架和数据。这些模型被学习和应用到许多问题上,从简单的回归到大规模的视觉分类,到Siame...
  • LG1259156776
  • LG1259156776
  • 2016年09月28日 09:23
  • 4274

caffe 通过model zoo 使用训练好的模型 finetune

caffe model zoo许多研究人员和工程师已经将Caffe模型用于各种架构和数据的不同任务: 这些模型被学习并应用于从简单回归到大规模视觉分类,到图像相似性的暹罗网络,语音和机器人应用的问题。...
  • sinat_27612639
  • sinat_27612639
  • 2017年05月25日 15:59
  • 1087

ubuntu下vgg16预训练模型转换为mxnet格式

Caffe模型转换成MxNet模型的工具 https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter 模型转换 ./run ...
  • zhyj3038
  • zhyj3038
  • 2016年09月06日 15:42
  • 1279

MXnet实战心得---值得拥有

最近终于新采购的硬件性能评测做完了!!! 本次硬件性能测评的操作系统是Linux Ubuntu 14.04,主要从基础测试和专业深度学习框架测试两方面进行的测试。 基础测试用Phoronix Te...
  • dcxhun3
  • dcxhun3
  • 2016年12月27日 18:35
  • 2303

Mxnet学习系列4----Caffe模型转换成Mxnet模型

这已经是Mxnet学习系列的第五篇了,感谢大家的支持!本篇博客主要讲一下在Caffe环境下搭建和训练好的模型怎样转换到Mxnet下使用。我觉得这一点是十分重要的: 首先,这样做节省了我们很多时间和精...
  • Sunshine_in_Moon
  • Sunshine_in_Moon
  • 2016年11月06日 16:06
  • 2692

MXNet:训练自己的数据并做预测

Prepare the input dataBecause the input data’s formt of MXNet is rec,so we must turn the image into ...
  • eternity1118_
  • eternity1118_
  • 2017年04月27日 17:22
  • 1291

使用mxnet的预训练模型(pretrained model)分类与特征提取

本人以前是使用tensorflow,但是tensorflow的预训练不太给力。虽然现在有tf-slim感觉还是太麻烦,网上说mxnet好的有点多,所以就看了下mxnet。只能说文档和接口都太不友好了,...
  • u010165147
  • u010165147
  • 2017年02月09日 21:47
  • 2289

Caffe模型移植到MXNet

使用caffe的一大好处是有很多的预训练模型,你可以从caffe的model zoo去下载这些模型。那么怎样把caffe的模型转到MXNet中呢?一种最简单也是最有效的方法就是把caffe的模型加载出...
  • tinyzhao
  • tinyzhao
  • 2016年12月10日 16:26
  • 3171
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:MxNet系列——model_zoo——index
举报原因:
原因补充:

(最多只允许输入30个字)