求n的阶乘的位数即求log10(n!)=log10(1)+log10(2)+......log10(n)//log函数和log10函数的作用是不一样的啊,一个底数是2一个底数是10,我刚开始就弄错了,然而用这个算法是超时的,所以还有一种简化的
n!=sqrt(2*pi*n)*(n/e)^n*(1+1/(12*n)+1/(288*n*n)+O(1/n^3));可以利用这个式子来进行求解的
exp函数返回以e为底数,给定数字为指数的幂
pi的值为2*arcsin(1);
#include<iostream>
#include<cmath>
using namespace std;
#define pi 3.1415926535898
#define e exp(double(1))
int main()
{
int n,m,i;
int sum;
cin>>n;
while(n--)
{
cin>>m;
sum=int(log10(sqrt(2.0*pi*m))+m*log10(m/e))+1;
// sum=int(log(sqrt(2*pi*m))/log(10.0)+m*log(m/e)/log(10.0));
// cout<<sum<<endl;
cout<<sum<<endl;
}
return 0;
}