随机梯度下降求解非平滑优化:收敛结果和最优平均策略。

参考文献:Stochastic Gradient Descent for Non-smooth Optimization:
Convergence Results and Optimal Averaging Schemes

文章分析了:

- Individual SGD Iterates的收敛性。
-
对于强凸的情况,期望误差为:

O(log(T)/T)

对于一般凸的情况,期望误差为:
O(log(T)/T)

算法结束后,返回最后一次迭代的结果。
- Averaging Schemes的收敛性。
-
对于强凸的情况,期望误差为:
O(1/T)

对于一般凸的情况,期望误差为:
O(1/T)

算法结束后,返回多次迭代的平均结果(依据不同的算法,产生不同的平均策略)
定义:
λstronglyconvex
如果对于所有的 w ,wW,以及函数 F w处的任意梯度,下面的不等式成立:
F(w)F(w)+<g,ww>+λ2||ww||2

其中, λ>0 。那么,那么称函数 F λstronglyconvex。当 λ=0 时,一般的凸函数总是满足上面的不等式。

Individual SGD Iterates的收敛性

理论1
假定函数 F λstronglyconvex,并且对于所有的 t ,满足E[||g^t||2]G2。考虑步长为 ηt=1/λt 的SGD。那么对于任何 T>1 ,满足下面的不等式:

E[F(wT)F(w)]17G2(1+log(T)λT

理论2
假定函数 F 是凸函数,并且对于某些常数:D,G,满足:
E[||g^t||2]G2forallt

supw,wW||w=w||D

考虑步长为 ηt=c/t ,其中 c>0 是一个常数。那么对于任何的 T>1 ,总是满足下面的不等式:
E[F(wT)F(w)](D2c+cG2)2+log(T)T

Averaging Schemes的收敛性

1、 αsuffixaveraging **
即定义为最后 αT 次迭代的平均:

w¯¯¯αw=1αTt=(1α)T+1Twt

缺点不能on-the-fly,需要存储后 αT 次的 wt
2、维持所有直到 t 次的平均:
w¯¯¯t=(11t)w¯¯¯t1+1twt

能够on-the-fly,仅获得次优的边界: O(log(t)/t .
3、 polynomialdecayaveraing -作者提出的。
它具有两个优点:1、可以on-the-fly的计算,即实时的计算。2、它给出了一个最优的收敛速度。对于任意的 t>1 ,其迭代计算公式如下:
w¯¯¯ηt=(1η+1t+η)w¯¯¯ηt1+η+1t+ηwt

其中 w¯¯¯η1=w1 η0 ,通常 η 取一个比较小的数,例如 η=3 .
η=0 时,其变成上述的2。
理论4
假定 F 是一个λstronglyconvex,并且 E[||g^t||2]G2 。考虑步长为 ηt=1/λt 和初始值为 w1 的SGD。同样的,我们令 η1 是一个整数。那么:
E[F(wηT)F(w)58(1+ηT)(η(η+1)+(η+0.5)3(1+log(T))T)G2λT

即算法的更新策略为:

  1. 计算次梯度 g^t
  2. 权重 w 更新迭代公式:
    wt+1=Π(wtηtg^t)(1)
  3. 平均权重 w¯¯¯ 更新迭代公式:

    w¯¯¯ηt=(1η+1t+η)w¯¯¯ηt1+η+1t+ηwt

    为了统一,上面的公式变为:
    w¯¯¯ηt+1=(1η+1t+η)w¯¯¯ηt+η+1t+ηwt+1(2)

  4. 算法终止,返回 w¯¯¯t t 表示算法终止时,当前的迭代次数。

    注意,公式(1)中的ηt和公式(2)中的 η 是完全不同的。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值