hive基本命令操作

转载 2015年07月09日 14:21:11

创建表:
hive> CREATE TABLE pokes (foo INT, bar STRING); 
        Creates a table called pokes with two columns, the first being an integer and the other a string

创建一个新表,结构与其他一样
hive> create table new_table like records;

创建分区表:
hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);

加载分区表数据:
hive> load data local inpath '/home/hadoop/input/hive/partitions/file1' into table logs partition (dt='2001-01-01',country='GB');

展示表中有多少分区:
hive> show partitions logs;

展示所有表:
hive> SHOW TABLES;
        lists all the tables
hive> SHOW TABLES '.*s';

lists all the table that end with 's'. The pattern matching follows Java regular
expressions. Check out this link for documentationhttp://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

显示表的结构信息
hive> DESCRIBE invites;
        shows the list of columns

更新表的名称:
hive> ALTER TABLE source RENAME TO target;

添加新一列
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
 
删除表:
hive> DROP TABLE records;
删除表中数据,但要保持表的结构定义
hive> dfs -rmr /user/hive/warehouse/records;

从本地文件加载数据:
hive> LOAD DATA LOCAL INPATH '/home/hadoop/input/ncdc/micro-tab/sample.txt' OVERWRITE INTO TABLE records;

显示所有函数:
hive> show functions;

查看函数用法:
hive> describe function substr;

查看数组、map、结构
hive> select col1[0],col2['b'],col3.c from complex;


内连接:
hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);

查看hive为某个查询使用多少个MapReduce作业
hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);

外连接:
hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);

in查询:Hive不支持,但可以使用LEFT SEMI JOIN
hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);


Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作
hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);

INSERT OVERWRITE TABLE ..SELECT:新表预先存在
hive> FROM records2
    > INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year 
    > INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year
    > INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;  

CREATE TABLE ... AS SELECT:新表表预先不存在
hive>CREATE TABLE target AS SELECT col1,col2 FROM source;

创建视图:
hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;

查看视图详细信息:
hive> DESCRIBE EXTENDED valid_records;

hive管理之命令行方式CLI

hive HQL CLI

Hive-命令行基本操作和java API访问hive数据库

安装 首先说明hive的安装。 链接: http://pan.baidu.com/s/1DleVG 密码: mej4 这个链接是一个视频的链接,视频中讲解了如何安装hive。 关于视频中用到的...

Hive基本命令整理

创建表: hive> CREATE TABLE pokes (foo INT, bar STRING);          Creates a table called pokes with tw...

hive 基本命令

创建表: hive> CREATE TABLE pokes (foo INT, bar STRING); Creates a table called pokes with two...

hive使用过的基本命令

use不能忘 show databases; 后,用use aso进入database:aso。   show columns from table_name from database_name; ...

HIVE学习与实践(一):基本命令

Hive学习笔记
  • dahunbi
  • dahunbi
  • 2016年11月03日 18:13
  • 186

Hive基本操作-DDL

Hive基本操纵-DDL一、简介 Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop分布式文件系统中。Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的...

Hive总结(五)表的基本操作

0.准备工作,在本地建立测试数据cat /data/hive_data/ data.txt 09 Nermaer 31 JiaJia 10 Messi 16 Santi 06 Tian 21...

Hive 基础(2):库、表、字段、交互式查询的基本操作

1、命令行操作 (1)打印查询头,需要显示设置: set hive.cli.print.header=true; (2)加"--",其后的都被认为是注释,但 CLI 不解析注释。带有注释的文件只...

Hive(三)--基本操作

阅读本文章可以带着下面问题: 1.与传统数据库对比,找出他们的区别 2.熟练写出增删改查(面试必备) 创建表: hive> CREATE TABLE pokes (foo INT, bar STRI...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hive基本命令操作
举报原因:
原因补充:

(最多只允许输入30个字)