R语言:用微软的深度学习得到人脸的特征数据

转载 2017年01月03日 12:35:34

本文系转载,原地址:http://blog.csdn.net/wzgl__wh/article/details/52904069

微软的深度学习https://www.microsoft.com/cognitive-services/en-US/subscriptions,使用Face功能来检测人脸的特征。下面用R语言来跑下案例:

> img.url = 'https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/44_barack_obama[1].jpg'
> faceURL = "https://api.projectoxford.ai/face/v1.0/detect?returnFaceId=true&returnFaceLandmarks=true&returnFaceAttributes=age"
> faceKEY = 'a868182e859c4458953f69dab084f5e8'
> mybody = list(url = img.url)
> faceResponse = POST(  
+   url = faceURL,   
+   content_type('application/json'), add_headers(.headers = c('Ocp-Apim-Subscription-Key' = faceKEY)),  
+   body = mybody,  
+   encode = 'json'  
+ )
> faceResponse
Response [https://api.projectoxford.ai/face/v1.0/detect?returnFaceId=true&returnFaceLandmarks=true&returnFaceAttributes=age]
  Date: 2017-01-03 04:33
  Status: 200
  Content-Type: application/json; charset=utf-8
  Size: 1.19 kB

> ObamaR = httr::content(faceResponse)[[1]]
> OR<-as.data.frame(as.matrix(ObamaR$faceLandmarks))
> OR
                              V1
pupilLeft           475.4, 158.6
pupilRight          590.6, 157.3
noseTip             534.4, 227.7
mouthLeft           460.8, 273.7
mouthRight          603.6, 268.2
eyebrowLeftOuter    425.2, 154.8
eyebrowLeftInner    508.4, 142.3
eyeLeftOuter        458.6, 162.6
eyeLeftTop          473.6, 153.8
eyeLeftBottom       475.9, 164.9
eyeLeftInner        492.8, 162.0
eyebrowRightInner   552.3, 141.4
eyebrowRightOuter   636.0, 156.2
eyeRightInner       571.7, 159.9
eyeRightTop         588.1, 152.5
eyeRightBottom      587.4, 163.9
eyeRightOuter       605.5, 161.5
noseRootLeft        511.2, 163.4
noseRootRight       551.2, 163.0
noseLeftAlarTop     503.1, 204.6
noseRightAlarTop    559.2, 201.6
noseLeftAlarOutTip  485.3, 226.9
noseRightAlarOutTip 580.5, 224.1
upperLipTop         530.9, 264.3
upperLipBottom      532.1, 272.5
underLipTop         530.3, 305.1
underLipBottom      532.5, 318.6
> OR$V2 <- lapply(strsplit(as.character(OR$V1), "\\="), "[", 2)
> OR$V2 <- lapply(strsplit(as.character(OR$V2), "\\,"), "[", 1)
> colnames(OR)[2] <- "X"
> OR$X<-as.numeric(OR$X)
> OR$V3 <- lapply(strsplit(as.character(OR$V1), "\\y = "), "[", 2)
> OR$V3 <- lapply(strsplit(as.character(OR$V3), "\\)"), "[", 1)
> colnames(OR)[3] <- "Y"
> OR$Y<-as.numeric(OR$Y)
> OR$V1<-NULL
> OR
                        X     Y
pupilLeft           475.4 158.6
pupilRight          590.6 157.3
noseTip             534.4 227.7
mouthLeft           460.8 273.7
mouthRight          603.6 268.2
eyebrowLeftOuter    425.2 154.8
eyebrowLeftInner    508.4 142.3
eyeLeftOuter        458.6 162.6
eyeLeftTop          473.6 153.8
eyeLeftBottom       475.9 164.9
eyeLeftInner        492.8 162.0
eyebrowRightInner   552.3 141.4
eyebrowRightOuter   636.0 156.2
eyeRightInner       571.7 159.9
eyeRightTop         588.1 152.5
eyeRightBottom      587.4 163.9
eyeRightOuter       605.5 161.5
noseRootLeft        511.2 163.4
noseRootRight       551.2 163.0
noseLeftAlarTop     503.1 204.6
noseRightAlarTop    559.2 201.6
noseLeftAlarOutTip  485.3 226.9
noseRightAlarOutTip 580.5 224.1
upperLipTop         530.9 264.3
upperLipBottom      532.1 272.5
underLipTop         530.3 305.1
underLipBottom      532.5 318.6

就这样得到了人的脸部数据,感觉可以用于比较人与人之间长相的差别。

如何使用R语言的Boruta包进行特征选择

原文链接:http://dataunion.org/23013.html 作者 Debrati 引言 变量选择是模型构建的一个重要方面,每个分析人员都必须学习。毕竟,它有助于排除相关...

使用R语言对照片人物进行情绪分析

人脸提供关于情绪的各种信息。 微软于2015年12月推出免费服务,分析人脸,进行情绪检测。 检测到的情绪是愤怒,蔑视,厌恶,恐惧,幸福,中立,悲伤和惊喜。 这些情绪被理解为与特定的面部表情跨文化和普...

R语言深度学习mxnet做分类

首先安装mxnet的包: cran cran["dmlc"] options(repos = cran) install.packages("mxnet")   完成之后我的R提示我要我重新下载...
  • xspyzm
  • xspyzm
  • 2017年07月19日 15:25
  • 139

R语言︱H2o深度学习的一些R语言实践——H2o包

R语言H2o包的几个应用案例      笔者寄语:受启发想了解H2o平台的一些R语言实现,网上已有一篇H2o的demo文件。笔者在这多贴一些案例,并且把自己实践的一些小例子贴出来。      关于...

opencv 人脸识别 (二)训练和识别

上一篇中我们对训练数据做了一些预处理,检测出人脸并保存在\pic\color\x文件夹下(x=1,2,3,...类别号),本文做训练和识别。为了识别,首先将人脸训练数据 转为灰度、对齐、归一化,再放入...

Deep Learning Face Attributes in the Wild

ICCV 2015 香港中文大学人脸方面的研究 http://personal.ie.cuhk.edu.hk/~lz013/projects/FaceAttributes.html本文使用三个...

remove()和直接使用system的一个区别

remove()和直接使用system的一个区别

使用ActiveMQ+MQTT实现Android点对点消息通知

实现点对点消息通知的关键问题 ActiveMQ使用MQTT协议,加上android上的paho包,即可简单实现消息通知功能,但是mqtt协议只支持topic,而且不能用selector,使得点对...

R语言:用微软的深度学习理解图片情感

本文系转载,原博客:http://blog.csdn.net/wzgl__wh/article/details/52904069 使用微软(https://www.microsoft.com/cogn...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:R语言:用微软的深度学习得到人脸的特征数据
举报原因:
原因补充:

(最多只允许输入30个字)