关闭

【BZOJ1923】外星千足虫,高斯消元解xor方程组

154人阅读 评论(0) 收藏 举报

Time:2016.08.29
Author:xiaoyimi
转载注明出处谢谢


传送门
思路:
原本以为是高斯消元解取模方程,后来发现这题意不就和异或方程一样吗

【异或(XOR)运算由于与“奇偶性”密切相关,经常出现在有关奇偶性和二进制的题目中】
很多异或问题都要涉及到解异或方程组,因此首先要搞懂异或方程组的解法。

(1)异或方程组的格式(设有n个未知数,m个方程): a11*x1 XOR a12*x2 XOR … XOR a1n*xn = b1
a21*x1 XOR a22*x2 XOR … XOR a2n*xn = b2 …………………………………………………… am1*x1
XOR am2*x2 XOR … XOR amn*xn = bm
其中的所有a、b、x的值均为0或1。解异或方程组就是给出了所有的系数a和b之后,求出解(x1, x2 …
xn)。一般来说,题目的要求无非就是如下几种:<1>求任意一组解;<2>求解的总数;<3>求出最优解(比如字典序最小的解或者加权以后权值最大/小的解等)。

n个未知数,m个方程,上高斯消元就可以了
但是我们发现直接做的复杂度是O(n2m)
所以又要引入一种神奇的STL东东——bitset
用它做位运算好像能降低一个指数
这样就可以满足要求了
关于无解的情况:只要有一个未知数在所有的方程中系数均为0,就是无解了
代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<bitset>
#include<string>
using namespace std;
int n,m,mx,ans[1003];
bool flag;
bitset<1003> f[2003];
char get()
{
    char ch=getchar();
    while (ch!='0'&&ch!='1') ch=getchar();
    return ch;
}
void gauss()
{
    int t;
    for (int i=1;i<=n;++i)
    {
        flag=0;
        for (int j=i;j<=m;++j)
            if (flag=f[j][i])
            {t=j;mx=max(mx,j);break;}
        if (!flag) return;
        if (t!=i) swap(f[t],f[i]);
        for (int j=i+1;j<=m;++j)
            if (f[j][i])
                f[j]^=f[i];
    }
    for (int i=n;i;--i)
    {
        t=f[i][n+1];
        for (int j=i+1;j<=n;++j) t^=ans[j]*f[i][j];
        ans[i]=t;
    }
}
main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;++i)
        for (int j=1;j<=n+1;++j)
            if (get()=='1') f[i].set(j);
    gauss();
    if (!flag) {printf("Cannot Determine");return 0;}
    printf("%d\n",mx);
    for (int i=1;i<=n;++i)
        if (!ans[i])
            puts("Earth");
        else
            puts("?y7M#");
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:124805次
    • 积分:4760
    • 等级:
    • 排名:第6048名
    • 原创:361篇
    • 转载:1篇
    • 译文:0篇
    • 评论:94条
    博客专栏
    最新评论