传送门
写在前面:依旧有毒的HDU,读题半天看不懂啊,感觉自动机的精通遥遥无期啊!
思路:
题意——给定m个给定的串(可能相同),要求组建一个给定长度为n的新串,要求新串中至少包含k个给定的串(序号重复算一个),求组成新串的方案数,所有出现的字符都为’a’-‘z’
(看到数据范围这么小,先想到高维DP、状压DP和网络流)建trie树,建fail指针,然后在自动机上进行DP,f[i][j][p]代表DP到了长度为i的新串,此时在自动机上的节点为j,p是用01二进制来表示m个给定串的选取情况,选了就是1,没选就是0(所以建trie树给m个串的标号要注意是1<<(id-1),不是id)。f[i][j][p]能扩展的状态就是
f[i+1][next][p|num[next]]
next是自动机上节点j能转移的所有编号(如果没有就回到fail节点找,建立fail的时候把这件事就办了),最后我们要的答案就是f[n][i][j],i是自动机上的任一节点,j在二进制下要求>=k个1,然而j的范围为0-1023,所以预处理出来0-1023所有数的二进制1的数量就可以了
注意:
初始化依旧要注意,同时仔细想想哪些需要清零,哪些能不用memset……
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#define mod 20090717
using namespace std;
int n,m,k,root=1,tot;
char s[15];
int trie[110][26],num[4000],f[30][110][1030],fail[4000],sum[1025];
queue<int>q;
void insert(char s[],int id)
{
int now=root;
for (int i=0;i<strlen(s);i++)
{
if (!trie[now][s[i]-'a']) trie[now][s[i]-'a']=++tot;
now=trie[now][s[i]-'a'];
}
num[now]|=(1<<id-1);
}
void build()
{
int now,tmp;
q.push(root);
while (!q.empty())
{
now=q.front();
q.pop();
num[now]|=num[fail[now]];
for(int i=0;i<26;i++)
if (trie[now][i])
{
tmp=fail[now];
while (tmp&&!trie[tmp][i]) tmp=fail[tmp];
if (now!=root&&tmp) fail[trie[now][i]]=trie[tmp][i];
else fail[trie[now][i]]=root;
q.push(trie[now][i]);
}
else
{
if (now==root) trie[now][i]=root;
else trie[now][i]=trie[fail[now]][i];
}
}
}
int main()
{
for (int i=0;i<1024;i++)
{
int t=i;
while (t)
{
if (t&1) sum[i]++;
t>>=1;
}
}
int x,y,z;
scanf("%d%d%d",&n,&m,&k);
while (n||m||k)
{
int ans=0;tot=1;
memset(trie,0,sizeof(trie));
memset(num,0,sizeof(num));
for (int i=1;i<=m;i++)
scanf("%s",s),
insert(s,i);
for (int i=0;i<=tot;i++) fail[i]=0;
build();
for (int i=0;i<=n;i++)
for (int j=0;j<=tot;j++)
for (int p=0;p<(1<<m);p++) f[i][j][p]=0;
f[0][1][0]=1;
bool now=0;
for (int i=0;i<n;i++)
for (int j=1;j<=tot;j++)
for (int p=0;p<(1<<m);p++)
if (f[i][j][p])
for (int l=0;l<26;l++)
x=i+1,y=trie[j][l],z=num[y]|p,
f[x][y][z]=(f[x][y][z]+f[i][j][p])%mod;
for (int j=0;j<(1<<m);j++)
if (sum[j]>=k)
for (int i=1;i<=tot;i++)
ans=(ans+f[n][i][j])%mod;
printf("%d\n",ans);
scanf("%d%d%d",&n,&m,&k);
}
}