【codevs2131】【BZOJ1924】所驼门王的宝藏,tarjan+拓扑DP

Time:2016.06.01
Author:xiaoyimi
转载注明出处谢谢


传送门1
传送门2
思路:
比较简单
使用规则建出一个包含N个点的无向图来,然后tarjan,得到重构后的有向无环图,然后拓扑DP就可以了
f[u]代表以i为起点所能走到的最多的点数
f[u]=max(f[v])(u,v)E
由DP方程我们可以开出来要求出点i的f值,必须要求它所有能到达的点的f值,所以我们可以反向建图拓扑排序,这样就能求出全部的f值了
注意:
1.建原图时处理起来很烦人,我用vector存储同一行、列的点,map存储周围一圈的点,所以常数大得吓人……
2.存边的数组一定要开大点……
代码:

#include<bits/stdc++.h>
#include<map>
#define M 100004
#define LL long long
using namespace std;
int in()
{
    int t=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) t=(t<<3)+(t<<1)+ch-48,ch=getchar();
    return t;
}
int k=in(),n=in(),m=in(),tot,cnt;
int IN[M],OUT[M],f[M],belong[M],siz[M],low[M],dfn[M],X[M],Y[M],T[M],first[M];
int dx[8]={0,0,-1,-1,-1,1,1,1},dy[8]={-1,1,-1,0,1,-1,0,1};
vector<int>a[M*10],b[M*10];
bool vis[M];
stack<int>S;
queue<int>Q; 
map<LL,int>mp;
struct edge{int v,next;}e[M*40];
void add(int x,int y){e[++tot]=(edge){y,first[x]};first[x]=tot;}
void dfs(int x)
{
    low[x]=dfn[x]=++cnt;
    S.push(x);
    vis[x]=1;
    for (int i=first[x];i;i=e[i].next)
        if (!dfn[e[i].v])
            dfs(e[i].v),
            low[x]=min(low[e[i].v],low[x]);
        else if (vis[e[i].v])
            low[x]=min(dfn[e[i].v],low[x]);
    if(low[x]==dfn[x])
        for (int y=-1;y!=x;y=S.top(),S.pop())
            siz[x]++,
            vis[S.top()]=0,
            belong[S.top()]=x;
}
main()
{
    for (int i=1;i<=k;i++)
        X[i]=in(),Y[i]=in(),T[i]=in(),
        mp[(LL)(X[i]-1)*m+Y[i]]=i,
        a[X[i]].push_back(i),
        b[Y[i]].push_back(i);
    for (int i=1;i<=k;i++)
    {
        if(T[i]==1)
            for (int j=0;j<a[X[i]].size();j++)
                if (i!=a[X[i]][j]) add(i,a[X[i]][j]);
                else;
        else if (T[i]==2)
            for (int j=0;j<b[Y[i]].size();j++)
                if (i!=b[Y[i]][j]) add(i,b[Y[i]][j]);
                else;
        else
            for (int j=0;j<8;j++)
            {
                LL t=(LL)(X[i]+dx[j]-1)*m+Y[i]+dy[j];
                int x=mp[t];
                if(x) add(i,x);
            }
    }
    for (int i=1;i<=k;i++)
        if(!dfn[i]) dfs(i);
    tot=0;
    memset(first,0,sizeof(first));
    for (int i=1;i<=k;i++)
    {
        if(T[i]==1)
            for (int j=0;j<a[X[i]].size();j++)
                if (belong[i]!=belong[a[X[i]][j]])
                    IN[belong[i]]++,
                    OUT[a[X[i]][j]]++,
                    add(belong[a[X[i]][j]],belong[i]);
                else; 
        else if (T[i]==2)
            for (int j=0;j<b[Y[i]].size();j++)
                if (belong[i]!=belong[b[Y[i]][j]])
                    IN[belong[i]]++,
                    OUT[b[Y[i]][j]]++, 
                    add(belong[b[Y[i]][j]],belong[i]);
                else;
        else
            for (int j=0;j<8;j++)
            {
                LL t=(LL)(X[i]+dx[j]-1)*m+Y[i]+dy[j];
                int x=mp[t];
                if(x&&belong[i]!=belong[x])
                    IN[belong[i]]++,
                    OUT[belong[x]]++,
                    add(belong[x],belong[i]);
            }
    }
    for (int i=1;i<=k;i++)
        if (!IN[i]&&siz[i])
            Q.push(i),
            f[i]=siz[i];
    for (;!Q.empty();Q.pop())
    {
        int x=Q.front();vis[x]=0;
        for (int i=first[x];i;i=e[i].next)
        {
            if (f[e[i].v]<f[x]+siz[e[i].v]) f[e[i].v]=f[x]+siz[e[i].v];
            IN[e[i].v]--;
            if (!IN[e[i].v]) Q.push(e[i].v);
        }
    }
    for (int i=1;i<=k;i++)
        f[0]=max(f[0],f[i]);
    printf("%d",f[0]);
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值