- 博客(1728)
- 资源 (17)
- 收藏
- 关注
原创 芯片:最强的手机芯片对比
当前手机芯片竞争激烈,天玑9400+、骁龙8 Elite和苹果A18 Pro是三大旗舰芯片。天玑9400+采用3nm工艺,安兔兔跑分超305万;骁龙8 Elite配备自研Oryon架构,AI算力45TOPS;A18 Pro单核性能突出,AI算力达200TOPS。AI能力成为新焦点,骁龙8 Gen5预计2025年底上市,跑分近300万。实际体验还需结合系统优化和散热设计。选购建议:追求性能选天玑9400+或骁龙8 Elite,注重生态选A18 Pro,性价比可关注骁龙8 Gen5或上代旗舰芯片。
2025-08-31 21:45:15
5294
原创 华为麒麟9010、9020、9030、9040系列芯片的性能参数及其与高通芯片的对比
摘要: 华为麒麟9010、9020、9030、9040系列芯片在工艺制程、CPU/GPU配置、AI算力等方面持续优化,性能逐步接近高通旗舰芯片。麒麟9020多核性能超骁龙8+ Gen1,9030预计对标骁龙8 Gen3,9040目标定位骁龙8 Elite。华为通过架构优化、国产等效5nm工艺及鸿蒙系统深度协同,在能效、通信(5.5G基带)和AI(40TOPS NPU)方面具备优势。实际体验因软硬件结合(如GPU Turbo)往往优于跑分,未来迭代值得关注。(150字)
2025-08-31 21:42:21
3451
原创 Flowable的内部机制 HistoricVariableInstance::getVariableName NullPointerException问题
摘要:当HistoricVariableInstance::getVariableName理论上不应返回null却引发NullPointerException时,可能源于Flowable变量存储机制异常、Collectors.toMap对null值的限制,或流程实例状态问题。解决方案包括添加null检查、处理null值及验证流程实例ID。最佳实践建议采用防御性编程、使用Optional、日志记录和输入验证来预防此类问题。核心措施是在数据转换前进行null过滤,确保Map键值有效,避免NPE异常。
2025-08-31 21:34:35
298
原创 Flowable获取历史表单数据方法
Flowable工作流引擎中,历史表单数据以流程变量形式存储在历史表中,可通过HistoryService接口查询。主要有三种方法:1)使用HistoricVariableInstanceQuery获取所有流程变量;2)通过HistoricDetailQuery查询详细表单提交记录;3)结合历史任务查询特定节点的表单数据。外置表单和文件数据同样适用这些方法,但需注意性能优化和数据类型转换。实际开发中建议根据审计需求选择查询方式,并处理大数据量分页问题。
2025-08-31 21:28:55
721
原创 OCR大模型 dots.ocr PK 主流OCR模型
摘要: dots.ocr是一款创新的端到端OCR大模型,采用统一视觉语言架构(1.7B参数/6GB),支持100+语言和复杂文档解析(表格、公式等)。相比主流OCR,其优势在于:多语言错误率低50%、表格解析TEDS 88.6(超越Surya)、动态任务切换(通过Prompt调整)。部署需20GB显存(RTX 4090/A100),适合学术文献、多语言场景,但存在超高分辨率需降采样、特殊字符敏感等限制。技术选型上,dots.ocr在综合性能领先,而PaddleOCR(轻量化)、EasyOCR(快速集成)、S
2025-08-18 22:22:09
1251
原创 主流开源OCR模型对比
开源OCR大模型选型指南 主流OCR工具各具特色:Tesseract支持100+语言,适合多语言印刷体;PaddleOCR中文识别最强,专精证件/表格处理;EasyOCR多语言快速部署;GOT-OCR 2.0支持公式/图表多模态解析;Surya擅长复杂表格识别;olmOCR专注PDF结构化解析;Umi-OCR满足离线轻量需求。选型需结合场景:中文优先PaddleOCR,学术文献选GOT-OCR/olmOCR,移动端用Umi-OCR,多语言考虑EasyOCR/Tesseract。未来趋势聚焦多模态融合与端到端
2025-08-18 22:19:46
1956
原创 开源OCR大模型dots.ocr的全面解析
摘要: dots.ocr是小红书Hi Lab团队开源的多语言OCR模型(1.7B参数),采用视觉语言模型架构实现端到端文档解析,支持100+语言、表格/公式提取和结构化输出。性能上,其表格解析(TEDS 88.6%)和低资源语言处理优于Gemini、PaddleOCR等主流模型,但需20GB显存。适用于学术文献、金融报表等复杂场景,虽在超高分辨率图像和特殊字符处理存在局限,但以轻量化参数实现高效多任务整合,推动OCR技术向高效架构发展。开源地址可获取模型及在线体验。 (注:摘要严格控制在150字内,涵盖核心
2025-08-18 22:17:08
1977
原创 点积、线性变换、矩阵乘法与几何空间通过投影与对偶性紧密相连
本文从几何角度解析了点积、线性变换与矩阵乘法的本质关联。点积的物理意义体现为投影操作与尺度变换的复合,其符号反映向量方向关系。点积运算等价于高维空间到一维的线性变换,这种对偶性揭示了一维变换均可表示为与某固定向量的点积。矩阵乘法本质是线性变换的复合,而行列式则量化了变换对空间的体积缩放与定向改变。这些理论在机器学习中广泛应用,如相似度计算、注意力机制和核方法等。全文通过投影与对偶性,构建了几何操作与代数表达的统一框架。
2025-08-18 22:01:43
1080
原创 线性代数系列知识
本文系统介绍了线性代数的核心内容,包括向量与矩阵基础、线性方程组求解、特征值与特征向量理论。重点阐述了向量运算、矩阵运算规则、秩的理论等基础知识,详细讲解了高斯消元法、解的存在性判定、解空间结构等线性方程组求解方法,并深入探讨了特征值与特征向量的定义、性质、计算及其应用。文章通过几何解释、算法步骤和典型示例,将抽象理论与实际应用相结合,为读者提供了全面的线性代数知识框架。
2025-08-17 00:14:00
1512
原创 Mixture-of-Recursions(MoR):Transformer的升级
MoR的核心目标是解决传统Transformer的计算冗余和参数低效问题
2025-08-16 22:23:49
571
原创 批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)的性能差异
本文通过三个案例对比了批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)的性能差异。在小型数据集中,MBGD在速度和稳定性上表现最优;中型数据集中,MBGD避免了BGD的内存溢出问题且训练效率比SGD快3.5倍;大型分布式训练中,MBGD通过批量分割和梯度聚合实现了17倍加速。分析表明,BGD适合小数据精确求解,SGD适用于在线学习,而MBGD在大数据场景下能平衡计算效率和收敛稳定性。建议根据数据规模选择算法,并通过调整批量大小和学习率优化性能。三种算法的本质是梯度估计方差与计算效率
2025-08-16 14:50:04
477
原创 Jackson 无法序列化 Hutool 的 `JSONNull` 对象
摘要: Hutool的JSONNull对象导致Jackson序列化失败(InvalidDefinitionException),可通过三种方案解决: 1️⃣ 推荐方案:在数据返回前将Hutool的JSONObject/JSONArray递归转为标准Java对象(Map/List),彻底消除JSONNull; 2️⃣ 兼容方案:为JSONNull注册自定义Jackson序列化器,强制输出为JSON的null; 3️⃣ 临时方案:禁用FAIL_ON_EMPTY_BEANS(不推荐,可能隐藏其他错误)。建议优先采
2025-08-15 23:22:15
403
原创 在深度神经网络中,梯度下降会遇到梯度消失/爆炸问题,有哪些解决方案?
在深度神经网络训练中,梯度消失(梯度趋近于零)和梯度爆炸(梯度指数级增长)是阻碍模型收敛的核心问题。解决思路有三:
2025-08-15 23:17:49
692
原创 梯度下降算法 自适应学习率策略(如Adam)
自适应学习率策略(如Adam)通过动态调整每个参数的学习率,解决了传统梯度下降中固定学习率的局限性(如收敛速度慢、易震荡)。其核心在于利用历史梯度信息为不同参数生成定制化的学习率。
2025-08-15 23:03:19
745
原创 梯度下降算法:原理与高效实现
本文系统阐述了梯度下降算法的数学原理与实现技术。通过参数更新规则θ=θ-α∇J(θ),算法沿梯度反方向逐步优化目标函数。重点介绍了三种实现方式:基础Python实现、线性回归应用和小批量梯度下降,并分析了批量大小对效率和稳定性的影响。文章还探讨了并行计算加速方法,对比了不同梯度下降变体的适用场景,提供了自适应学习率、动量法等调优技巧。最后强调精确梯度计算、合理学习率设定和特征标准化的重要性,推荐使用小批量梯度下降配合Adam优化器实现高效优化。
2025-08-15 22:56:07
999
原创 Spring Cloud 中,@FeignClient注解的 url属性通过占位符注入详解
摘要: Spring Cloud中@FeignClient的url属性支持通过占位符(如${feign.url.property})动态注入配置值,其核心机制依赖Spring环境属性解析与Feign代理初始化。启动时,Spring从配置源解析占位符并硬编码到Feign代理,后续请求直接使用该URL(绕过服务发现)。动态刷新需配合@RefreshScope重建代理。注意事项:1) 配置优先级遵循Spring规则;2) URL需显式声明协议;3) 生产环境慎用(丧失负载均衡能力);4) 建议多环境隔离配置。最佳
2025-08-13 23:49:58
795
原创 Spring Cloud微服务架构中,使用FeignClient结合Nacos,无需重启服务的动态修改FeignClient URL的方案
摘要:在Spring Cloud微服务中,动态修改FeignClient URL的5种方案:1) 配置中心动态刷新(Nacos+@RefreshScope);2) 运行时编程修改(自定义Feign.Builder);3) AOP切面路由(拦截请求替换URL);4) 环境隔离(Profile分环境配置);5) 开发工具热加载(DevTools/JRebel)。推荐开发调试用方案2或5,生产环境优先方案1或3。所有方案均绕过注册中心,需注意负载均衡失效问题,适用于特殊场景调试。(149字)
2025-08-13 23:42:20
469
原创 AI: RAG方案大比拼
本文对比分析了主流RAG(检索增强生成)框架的核心特性、适用场景及性能差异,为企业选型提供决策参考。主要框架包括LangChain(生态丰富)、Haystack(生产级优化)、DSPy(自动优化)、LlamaIndex(复杂数据处理)和txtai(多模态支持)。文章详细对比了五种RAG模式的架构复杂度、检索精度及适用规模,并给出选型建议:简单问答用Naive RAG,动态知识库选Advanced RAG,多源异构数据适合Modular RAG。同时探讨了RAG与微调的差异及混合方案策略,推荐初期用RAG快速
2025-08-09 23:52:43
1093
原创 AI: Cherry Studio 是一款跨平台的开源 AI 桌面客户端
Cherry Studio:开源跨平台AI桌面客户端 Cherry Studio是一款支持Windows、macOS和Linux的开源AI工具,整合了40+主流AI模型(如OpenAI、Gemini、Claude等),提供多模态对话、知识库管理、代码生成和文生图等功能。其特点包括:本地化数据存储保障隐私、开源社区驱动(GitHub 24k+ Stars)、支持RAG技术增强问答准确性,以及300+预配置行业助手。适用于开发者、研究教育、企业及创意工作者,最新版本v1.5.4优化了性能并新增全链路追踪功能。
2025-08-09 23:49:13
673
原创 GPT-5的统一引擎与国产模型的MoE架构各有什么优势和局限性
摘要:GPT-5的"统一引擎"与国产模型的MoE架构各具特色。GPT-5通过动态路由Transformer实现多模态深度融合,支持复杂任务链但算力消耗巨大;国产MoE架构(如Qwen)采用稀疏激活机制,计算效率高且易于垂直领域部署,但存在路由稳定性不足等问题。技术对比显示,GPT-5擅长通用多模态任务,国产模型更适合行业纵深应用。未来可能走向技术融合,GPT-5或引入MoE层优化能耗,国产模型则可能增强通用能力。两者分别代表了AGI探索与行业落地的不同路径,最终可能形成互补发展的生态格局
2025-08-08 09:01:11
1939
原创 GPT-5震撼发布:博士级AI登场,国产模型开源破局
OpenAI发布GPT-5,实现"博士级"AI能力跃升,在编程、写作、医疗等领域展现突破性进展。国产AI模型以开源生态和垂直应用应对,通义千问登顶编程榜,沧渊深耕海洋科技,形成差异化竞争优势。全球AI进入双轨发展阶段:美国主导通用智能前沿,中国聚焦行业落地与开源生态。技术竞争正从单一模型转向全栈能力与产业转化的综合比拼。
2025-08-08 08:57:49
889
原创 Flowable:通过流程实例ID获取持久化表单数据和检查流程实例审批状态的功能
本文介绍了在Spring Boot中整合Flowable工作流引擎的实现方法,主要包含通过流程实例ID获取表单数据和检查审批状态功能。Controller层提供RESTful接口,Service层利用Flowable的HistoryService、RuntimeService等核心API实现具体逻辑。表单数据从历史变量表获取,审批状态通过查询运行时任务和历史流程实例判断。文章还给出了接口测试示例,并提出了性能优化、异常处理等注意事项,建议高频状态检查改用业务表字段以提高效率。该实现基于Flowable 6.
2025-08-06 22:15:09
647
原创 Flowable:根据processInstanceId获取flowable里持久化的表单数据的通用方法
本文介绍了一个通用的Java方法,用于从Flowable流程引擎中获取流程实例的表单数据。该方法通过合并两种数据源(HistoricVariableInstance和HistoricFormProperty)来全面收集表单数据,包括启动表单和任务表单提交的信息。核心功能包括: 通过流程实例ID查询历史变量和表单属性 合并两种数据源确保数据完整性 提供文件上传等特殊情况的处理建议 包含性能优化和数据类型转换的注意事项 该方法适用于大多数Flowable表单数据持久化场景,支持JSON表单等外置表单类型,并提供
2025-08-06 22:12:06
446
原创 在 Flowable 工作流引擎中,如何获取表单数据信息
摘要: Flowable工作流引擎获取表单数据的方法因表单类型(动态/外置)和节点类型(启动/任务/历史)而异。核心方法包括: 启动节点:FormService.getStartFormData()获取表单定义,RuntimeService读取流程变量; 任务节点:FormService.getTaskFormData()查询字段定义,流程变量或历史服务获取提交值; 历史数据:通过HistoryService查询持久化数据; 外置表单需单独部署,数据通过formKey映射为流程变量。 原理:表单数据均存储为
2025-08-06 22:08:11
877
原创 AI加速器三大技术栈详解:CUDA、ROCm与CANN
本文全面解析AI三大加速平台:NVIDIA CUDA、AMD ROCm和华为CANN,从架构设计到实战应用。CUDA作为行业标准,生态成熟但封闭;ROCm开源跨平台,生态仍在完善;CANN专为国产昇腾NPU设计,软硬协同优势明显。文章对比了三者在编程模型、工具链和适用场景的差异,并给出选型建议:CUDA适合成熟HPC应用,ROCm适合成本敏感型场景,CANN符合国产化需求。未来趋势呈现CUDA生态封锁与开源方案并进的局面,开发者需根据实际需求选择技术栈。
2025-08-06 21:59:01
1413
原创 Flowable、Activiti 和 Camunda的演进
三个主流工作流引擎Flowable、Activiti和Camunda均源自jBPM项目,因技术路线和商业策略分歧而独立发展。Camunda从Activiti 5分叉而来,专注于高性能和企业级监控;Flowable则基于Activiti 6重构,强化多模型支持;Activiti 7因社区活跃度下降而式微。技术层面,Camunda采用双异步机制和SAGA事务,适合高并发场景;Flowable支持动态流程调整和多模型编排;Activiti则适合轻量级需求。选型建议:追求性能选Camunda,需灵活流程选Flowa
2025-08-04 23:29:28
643
原创 深入剖析Flowable——原理、源码与实践全解析
摘要:本文深度解析Flowable工作流引擎的架构原理与实践应用。从分层架构设计(持久层/核心层/服务层)到BPMN 2.0解析机制,详细剖析了异步处理引擎、事务管理等核心原理。通过源码示例展示了命令模式与责任链的设计实现,并提供了Spring Boot集成配置方案。文章还分享了企业级优化策略,包括性能调优、灰度发布和安全加固,最后展望了云原生、AI集成等发展方向。适用于需要构建高效业务流程系统的开发者和架构师参考。
2025-08-04 23:20:35
1351
原创 AI:通俗易懂地解释Transformer的注意力机制
Transformer 的注意力机制就像人脑的聚光灯,能在嘈杂信息中精准聚焦关键内容。它通过Q(问题)、K(关键词)和V(实际值)三个角色协同工作:先计算词语间的关联度,再给重要信息分配更高权重,最后整合关键内容形成准确理解。相比传统RNN的线性处理,自注意力机制让所有词语直接"对话",解决了长距离依赖问题。多头注意力则从多个角度并行分析,如同多盏聚光灯同时照亮不同侧面。这种机制支持并行计算、增强可解释性,成为GPT等大模型的核心基础,让AI真正学会了像人类一样的"专注&quo
2025-07-23 00:46:11
686
原创 AI标准化协议: MCP(Model Context Protocol,模型上下文协议), AI的“万能插座”和“协作引擎”
摘要: MCP(Model Context Protocol)是一种标准化协议,旨在统一大型语言模型与外部工具的交互方式,解决接口碎片化、能力局限和安全风险问题。其技术架构分为执行环境、通信枢纽和服务终端三层,支持动态能力发现、细粒度权限控制和多种通信模式。应用场景涵盖企业智能化、工业物联网和消费级AI助手,显著提升开发效率与协作能力。MCP通过模块化设计和开放生态重构AI价值链,推动AI普惠化。未来将与5G、边缘计算等技术融合,成为连接AI"思考层"与"行动层"的关
2025-07-23 00:14:23
982
原创 AI 从对话到行动:一文看懂Prompt、Agent、MCP、Function Calling与大模型
摘要: AI协作的核心技术包括Prompt(用户指令)、Agent(任务规划)、Function Calling(工具调用)和MCP(统一接口协议)。Prompt指导AI响应,Function Calling让AI调用外部工具,Agent自主拆解复杂任务,MCP标准化工具连接。四者协同工作,使AI从聊天机器人升级为能执行实际任务的智能助手。例如,规划旅行时,用户通过Prompt提出需求,Agent分解步骤,调用航班查询等工具,经MCP整合数据,最终生成完整方案。这一技术演进将AI从“对话”推向“行动”,逐步
2025-07-22 23:51:26
953
原创 AI:主流激活函数(Activation Function)及其使用场景
摘要:本文系统梳理了神经网络中主流和新兴的激活函数,包括Sigmoid类、ReLU家族、平滑近似函数等7大类。详细分析了Sigmoid、Tanh、ReLU、GELU、Swish等典型激活函数的数学公式、适用场景及优缺点,并给出PyTorch代码示例。文章指出,不同激活函数适用于不同任务场景,如ReLU适合默认隐藏层,GELU适用于Transformer,Swish在深度网络表现优异。最后提供了激活函数选择建议,强调需根据具体任务需求进行实验验证。
2025-07-22 02:05:17
782
原创 AI:激活函数(Activation Function),深度网络非线性能力的数学支点
激活函数是神经网络中将仿射变换结果映射到非线性空间的唯一算子,它决定了网络的表达能力、优化动力学与数值稳定性。本文用统一的数学符号系统回顾 20 余种主流激活及其变体,给出梯度传播解析、初始化耦合关系、计算复杂度对比以及在 CNN、RNN、Transformer、量化网络中的落地建议,并附 PyTorch 与 JAX 的代码片段。
2025-07-22 01:59:49
676
原创 AI:词嵌入(Word Embedding)中的未登录词(Out-Of-Vocabulary, OOV)问题
摘要:未登录词(OOV)问题是NLP中测试词汇未出现在训练词表中的现象,主要由语言动态性、数据局限性和技术限制导致。OOV会降低模型性能,造成信息损失。主流解决方案包括子词分割(如WordPiece、BPE)、字符级模型和混合策略。不同语言OOV率差异显著,中文处理需结合字符级拆分和语素特征。最新进展包括动态词汇扩展和多模态嵌入。实践中建议优先选择支持子词处理的模型(如BERT),中文任务可优化使用全词掩码模型。OOV问题反映语言无限性与模型有限性的矛盾,虽在子词技术推动下有所缓解,但跨语言和低资源领域仍有
2025-07-18 23:11:42
825
原创 AI:词嵌入技术(Word Embedding)
摘要:词嵌入技术通过将词语映射为低维向量,捕捉语义和语法特征,是自然语言处理(NLP)的核心基础。其发展经历了从早期神经概率模型到Word2Vec、GloVe等静态嵌入,再到BERT等动态上下文感知模型的演进。当前主流技术各具特点,如Word2Vec训练快、FastText解决未登录词问题,而BERT具备强大的上下文理解能力。前沿趋势包括多模态嵌入、领域自适应和模型优化。应用场景广泛,涵盖文本分类、机器翻译、推荐系统等,并催生了OpenAI Embeddings等商业API。未来面临偏见消除、多语言支持等挑
2025-07-18 23:09:19
1134
原创 AI: 一文读懂循环神经网络(RNN)
摘要: 循环神经网络(RNN)是处理序列数据的核心模型,通过隐藏状态传递历史信息实现序列依赖建模。其核心结构在每个时间步接收当前输入和上一状态,通过时间展开形成链式结构。针对传统RNN的梯度消失问题,LSTM引入遗忘门、输入门和输出门增强长期记忆能力,GRU则通过简化门控结构提升效率。RNN在自然语言处理(文本生成、情感分析)、时间序列预测和语音识别等领域有广泛应用,但面临梯度不稳定和训练复杂度高的挑战。PyTorch等框架为RNN实现提供了便捷工具,LSTM等改进模型显著提升了序列建模性能。未来结合注意力
2025-07-17 00:13:08
1211
原创 AI: 卷积神经网络(CNN)
卷积神经网络(CNN)是处理网格数据(如图像)的核心深度学习模型,通过局部连接和权值共享实现高效特征提取。其核心组件包括卷积层(提取局部特征)、激活函数(引入非线性)、池化层(下采样)和全连接层(分类)。经典架构如LeNet、AlexNet、VGG、ResNet等不断推进CNN性能。优势在于参数高效和自动特征学习,但存在长距离依赖捕捉困难等问题。CNN广泛应用于图像分类、目标检测等任务,配合PyTorch等框架可实现高效模型构建。未来发展趋势是与注意力机制结合,提升全局建模能力。
2025-07-17 00:09:20
679
原创 AI:机器学习中的正则化(Regularization)
正则化(Regularization)是机器学习中防止模型过拟合的核心技术,通过在损失函数中添加惩罚项来约束模型复杂度,提升泛化能力。
2025-07-16 00:16:03
625
原创 AI: 以房屋价格预测为例讲明白梯度下降、线性回归、损失函数、欠拟合、过拟合与正则化
通过一个房屋价格预测的实例,串联梯度下降、线性回归、损失函数、欠拟合、过拟合与正则化的关系。采用“场景→问题→方法”的逻辑链,结合数学原理与形象类比,助你建立系统性认知。
2025-07-16 00:03:29
1009
原创 AI: 欠拟合 过拟合 损失函数 线性回归 一文搞懂
机器学习模型的两大挑战与核心原理 模型训练面临欠拟合(高偏差)和过拟合(高方差)双重困境:欠拟合因模型过于简单,需增加复杂度或特征工程;过拟合因模型过于复杂,可通过正则化、早停法或数据增强解决。损失函数(如MSE、交叉熵)是优化核心,量化误差并指导参数调整。线性回归作为基础方法,可通过扩展特征或正则化升级。整个过程形成“训练-评估-迭代”闭环,理解这些概念的关联是提升模型性能的关键。 (字数:150)
2025-07-14 18:57:33
671
原创 AI: 线性函数、非线性函数、神经网络、前向传播、反向传播等知识一文搞懂
线性函数的本质与局限:用数学公式和几何图示介绍线性特性,分析其在复杂模式识别中的不足。非线性函数的变革力量:结合实例说明非线性如何突破线性约束,并对比常见激活函数(ReLU、Sigmoid)的数学特性。神经网络:分层抽象的艺术:以工厂流水线为类比,拆解输入层、隐藏层、输出层的协作机制。前向传播:数据的正向旅程:分步骤演示数据从输入到输出的计算过程,包含权重与偏置的作用。训练机制:误差的反向优化:通过梯度下降和链式法则解释参数更新原理,讨论梯度消失/爆炸问题。
2025-07-14 18:53:06
1054
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人