中国剩余定理+容斥_____Lucky7( hdu 5768 2016多校第四场 )

原创 2016年08月28日 16:47:48

Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 

Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 

Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 

Sample Input
2 2 1 100 3 2 5 3 0 1 100
 

Sample Output
Case #1: 7 Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers. For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
 
题意:
给一个区间[L,R]和n对数ai,pi,问区间有多少个数m满足是7的倍数并且对于任意一对ai,pi都有m%pi != ai。所有pi都是相互互质。

分析:
因为一共最多15对数。那么最多2^15个状态。所以可以用容斥排除重复的部分。可以将7的倍数这一个条件也看做是同余方程组的其中一个。不过要提前判断一下,如果题目给你的pi中有7的倍数。那么判断这一对的ai,如果ai=0.显然无论如何这一对一定满足所以输出0。如果ai!=0显然无论这一对都不会满足。
注意的是在使用中国剩余定理的时候三个数相乘可能会超longlong所以需要使用快速乘法。

代码:
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
typedef long long ll;
int k;
ll left,right,ans;
ll m[16],a[16],M[40000],s[40000];
ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}
ll gcd(ll a,ll b,ll &x,ll &y)
{
   ll t,ret;
   if(!b)
   {
     x = 1;
     y = 0;
     return a;
   }
   ret=gcd(b,a%b,x,y);
   t=x;
   x=y;
   y=t-a/b*y;
   return ret;
}
ll mul(ll a,ll b,ll mod)
{
    if(b < 0) return (-mul(a,-b,mod)%mod+mod);
    if(b == 0) return 0;
    if(b == 1) return a%mod;
    if(b%2 == 0) return mul((a+a)%mod,b/2,mod);
    return (mul((a+a)%mod,b/2,mod)+a)%mod;
}
ll lmes(ll a[],ll m[],int n,int num,ll& tm)
{
    ll ret = 0;
    tm = 7;
    for(int i = 0 ; i < n ; ++i){
        if(num&(1<<i))
        {
            tm*=m[i];
        }
    }
    for(int i = 0 ; i < n ; ++i)
    {
        if(!(num&(1<<i)))continue;
        ll mi = tm/m[i],x,y;
        gcd(mi,m[i],x,y);
        ret = (ret + mul(mul(a[i],x,tm),mi,tm))%tm;
    }
    if(ret<0) ret = (ret+tm);
    return ret;
}
int bitcount(int num)
{
    int c =0;
    for (c =0; num; ++c)
    {
        num &= (num -1) ; // 清除最低位的1
    }
    return c ;
}
void init()
{
    for(int i = 1 ; i < (1<<k) ; ++ i)
    {
        s[i] = lmes(a,m,k,i,M[i]);
    }
    ans = right/7 - left/7;
}
ll cnt(ll ta,ll tm)
{
    ll cnt1 = right/tm + (right%tm>=ta?1:0);
    ll cnt2 = left/tm + (left%tm>=ta?1:0);
  //  printf("%lld %lld %lld %lld\n",ta,tm,cnt1,cnt2);
    return cnt1 - cnt2;
}
void work()
{
    init();
    for(int i = 1 ; i < (1<<k) ; ++i)
    {
        if(bitcount(i)%2==0)
        {
            ans += cnt(s[i],M[i]);
        }
        else
        {
            ans -= cnt(s[i],M[i]);
        }
    }
    printf("%lld\n",ans);
}
int main()
{
    int t,_case=0;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%lld%lld",&k,&left,&right);
        left --;
        int tot = 0;
        bool flag = false;
        for(int i = 0 ; i < k ; i ++)
        {
            scanf("%lld%lld",&m[tot],&a[tot]);
            if(m[tot] % 7 == 0)
            {
                if(a[tot] == 0) flag = true;
                else tot --;
            }
            tot++;
        }
        k = tot;
        printf("Case #%d: ",++_case);
        if(flag)printf("0\n");
        else
            work();
    }
    return 0;
}






版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU 5768 Lucky7 数论 中国剩余定理

原题见HDU 5768求[l,r]范围内是7的倍数,同时不满足任意一个给定的同余式的数的个数。如范围为[1,100],不满足模3余2或模5余3的7的倍数有7,21,42,49,70,84,91 ,故答...
  • Danliwoo
  • Danliwoo
  • 2016年07月28日 19:03
  • 1707

HDU 5768 Lucky7(中国剩余定理+容斥原理)

Description 给出区间[l,r],问[l,r]中能整除7且模pi不等于ai的数的个数 Input 第一行一整数T表示用例组数,每组用例首先输入三个整数n,l,r,之后n行每行两个整数p...
  • V5ZSQ
  • V5ZSQ
  • 2016年08月10日 12:50
  • 253

hdu 5768 Lucky7 容斥原理 中国剩余定理

题目传送门:点击打开链接 题意:给你区间[a,b],在这区间里 找出 既是7的倍数 x,并且 x%pi!=ai的个数 有多少? 思路:看到这题  跟模有关系  大概跟 中国剩余定理有关,可是题目说的 ...
  • S1766434333
  • S1766434333
  • 2016年11月28日 19:17
  • 226

HDU 5768 (Lucky7 中国剩余定理+容斥原理)

题目链接 问区间[x,y]能被7整除,且不可以 %pi=ai, 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题。当我们选定了一系列pi和ai后,题...
  • u013167299
  • u013167299
  • 2016年07月29日 16:32
  • 199

HDU 5768 (中国剩余定理 容斥)

题目链接:点击这里题意:求区间中7的倍数并且模pip_i不等于aia_i的个数.相当于求模7等于0的数中扣掉模pip_i等于aia_i的个数,这个东西看着就很容斥。先枚举限制条件的组合,然后加上模7等...
  • morejarphone
  • morejarphone
  • 2016年07月29日 13:06
  • 375

hdu 5768(中国剩余定理+容斥)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768; 题目分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容...
  • qq_27599517
  • qq_27599517
  • 2016年07月30日 15:31
  • 456

hdu - 5238 Calculator(线段树+中国剩余定理)线段树好题

原来还不知道中国剩余定理能干什么用,先上几篇中国剩余定理的介绍 下面内容转自:http://wenku.baidu.com/link?url=g1Hiu6UtSoOR6Y3tiHpn5M3_HPn...
  • u010660276
  • u010660276
  • 2015年06月06日 13:33
  • 807

HDU 5768 Lucky7 中国剩余定理

转载声明:http://blog.csdn.net/acdreamers/article/details/8050018 (模板)题意:给你一段区间的,要求能被7整除的个数,然后给你n个条件, 其中的...
  • zzz805
  • zzz805
  • 2016年07月29日 19:50
  • 89

【hdu】3430 Shuffling【中国剩余定理】

题意:给出n张牌,标号为1-n,然后给出两个序列,序列1表示序列1,2,3,4……,n洗一次牌后到达的,序列2表示目标序列,问初始序列按序列1的洗牌方式洗几次能到达序列2的情况,如果不能到达输出-1 ...
  • a709743744
  • a709743744
  • 2016年07月11日 13:25
  • 485

HDU 5768(中国剩余定理+容斥定理)

题目描述:计算(a,b)内能被7整除且不满足给定条件的数有多少个。 首先找出能被7整除的数,再除去能被7整除且满足一个条件的数,这可能会把满足两个条件的数减去两次,所以要加上即为容斥定理。 代码如...
  • q437634645
  • q437634645
  • 2016年07月29日 21:18
  • 107
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:中国剩余定理+容斥_____Lucky7( hdu 5768 2016多校第四场 )
举报原因:
原因补充:

(最多只允许输入30个字)