基本分组背包

有n件物品和一个容量为v的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为几组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.


意思是每组物品有几种决策:是选择本组的某一件,还是一件都不选。
f[k][v]表示前k组物品花费费用v能取得的最大价值,则有:

f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]}//i是枚举第k组中的物品


基本代码:
for(int k=1;k<=n;k++)
   for(int j=v;j>=0;j--)//枚举钱
       for(int i=a[k][1];i<=gs[k];i++) //枚举第k组中的物品
           f[v]=max(f[v],f[v-c[a[k][i]]]+w[a[k][i]]);

ps:

枚举物品的循环必须放在内层,这样才能保证每一组内的物品最多只有一个会被添加到背包中。

### 三级标题:分组背包问题概述 分组背包问题是动态规划中的一种变种问题,它要求在有限的容量下,从多个物品组中选择物品以最大化价值。每组物品中只能选择一个物品。解决这类问题通常需要使用二维动态规划数组来记录状态。 ### 三级标题:分组背包问题的动态规划实现 解决分组背包问题的基本思路是通过动态规划来实现。首先初始化一个二维数组`dp`,其中`dp[i][j]`表示从前`i`组中选择物品装入容量为`j`的背包所能得到的最大价值。对于每一组物品,需要遍历所有可能的背包容量,并且对于每一个物品,决定是否将其放入背包中。 下面是一个简化的分组背包问题的动态规划实现示例: ```cpp // 假设groups是物品的分组列表,每个分组包含若干物品的重量和价值 // T是背包的总容量 // n是物品的总数量 // 初始化dp数组 int dp[T+1] = {0}; // 遍历每个分组 for (auto group : groups) { // 对于分组中的每个物品,进行0/1背包处理 for (int j = T; j >= 0; j--) { for (auto item : group) { if (j >= item.weight) { dp[j] = max(dp[j], dp[j - item.weight] + item.value); } } } } ``` ### 三级标题:分组背包问题的优化 在实际应用中,为了节省空间,可以将二维数组优化为一维数组。这是因为每次更新`dp`数组时,只需要前一次的状态。因此,可以使用一维数组`dp`来进行状态转移,并且在处理每个分组时,需要逆序遍历背包的容量,以确保每组物品的选择不会相互干扰。 ### 三级标题:分组背包问题的应用 分组背包问题可以应用于多种场景,例如资源分配、投资组合优化等。在这些场景中,可能需要考虑每组至少选择一个物品、每组恰好选择一个物品或者混合类型的分组背包问题。这些问题可以通过调整动态规划的状态转移方程来解决。 ### 三级标题:分组背包问题的变种 分组背包问题的变种包括但不限于以下几种情况: - 每组至少选择一个物品。 - 每组恰好选择一个物品。 - 混合分组背包问题,其中包含不同类型的物品组,如0/1背包、至多1个的分组背包、至少1个的分组背包等。 - 结合数论的分组背包问题,这可能涉及到更复杂的数学计算。 ### 三级标题:分组背包问题的总结 分组背包问题是一个经典的动态规划问题,它要求在有限的条件下做出最优的选择。通过合理的设计状态转移方程,可以有效地解决这类问题。此外,分组背包问题还可以与其他数学概念相结合,形成更加复杂的问题模型。 ### 三级标题:分组背包相关题集整理 在实际的编程竞赛和算法练习中,分组背包问题经常出现。例如洛谷上的题目P1757“通天之分组背包”,就是一个典型的分组背包问题,可以通过上述的动态规划方法来解决。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值