关闭

[置顶] 网络流之最大流算法(EdmondsKarp)

求网络流有很多算法,这几天学习了两种,记录一下EK算法。 首先是网络流中的一些定义: V表示整个图中的所有结点的集合. E表示整个图中所有边的集合. G = (V,E) ,表示整个图. s表示网络的源点,t表示网络的汇点. 对于每条边(u,v),有一个容量c(u,v)   (c(u,v)>=0),如果c(u,v)=0,则表示(u,v)不存在在网络中。相反,如果原网络中不存在边(u,v)...
阅读(69962) 评论(16)

[置顶] C++STL之string

在学习c++STL中的string,在这里做个笔记,以供自己以后翻阅和初学者参考。 1:string对象的定义和初始化以及读写 string s1;      默认构造函数,s1为空串 string s2(s1);   将s2初始化为s1的一个副本 string s3("valuee");   将s3初始化一个字符串面值副本 string s4(n,'c');   将s4 初始化为字符'...
阅读(31827) 评论(1)

线性回归多重共线性优化

问题引入之前分析了线性回归问题的解法,最小二乘回归法,但是对于大多数的实际问题,由于我们要用有限的观测值去估计模型的分布,比如在之前讲线性回归中的例子,给出的样例有100对,而我们建立的模型是一条直线,我们都知道两点确定一条直线,这里有100个点,这种称作过度确定估计,同时很多样例由于各种原因本身存在误差,另一个方面是特征之间相关性很大,说白了就是两个特征之间存在关系,本身可以用一个变量来表示,这样...
阅读(131) 评论(0)

推荐算法基础--相似度计算方法汇总

推荐系统中相似度计算可以说是基础中的基础了,因为基本所有的推荐算法都是在计算相似度,用户相似度或者物品相似度,这里罗列一下各种相似度计算方法和适用点余弦相似度similarity=cos(θ)=A⋅B∥A∥∥B∥=∑i=1nAi×Bi∑i=1n(Ai)2−−−−−−−√×∑i=1n(Bi)2−−−−−−−√{\text{similarity}}=\cos(\theta )={A\cdot B \ov...
阅读(496) 评论(0)

推荐算法基础--矩阵奇异值分解svd

在推荐系统中协同过滤应该算是大名鼎鼎了,基本上做推荐的线上都会用协同过滤,比较简单而且效果较好,而协同过滤又分为基于用户的和基于物品的,基本上原理就是“与当前用户行为相似的用户喜欢一个物品,那么当前用户也会喜欢这个物品”,或者“物品A和物品B同时都被一个用户群喜欢,那么认为他们相似”。而协同过滤算法主要有两个模型,最邻近点对模型和潜在语义模型,第一个比较常用且为大家熟知,因为就是定义权值计算相似度,...
阅读(123) 评论(0)

机器学习基础--贝叶斯分类器

单纯的贝叶斯分类器很简单,基本上就是一个贝叶斯公式,要理解透彻贝叶斯分类器需要搞清楚两个概念似然函数基本上维基百科讲的很清楚,我这里在重复一下,可以直接去维基百科看 在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统...
阅读(184) 评论(2)

boosting增强学习

boost是通过组合多个弱基学习器,弱学习器定义是泛化性能弱,略优于随机猜测的学习器,通过组合多个若学习器来得到一个强泛化能力的学习器(三个臭皮匠赛过诸葛亮)。根据单个学习器之间是强依赖以及不能串行序列化的学习代表算法是AdaBoost,另一种相反的方法是Bagging或者随机森林(Random Forest)adaboost讲解基本上上面讲解的非常详细,我这里说一点我的理解,boost首先跟决策树...
阅读(111) 评论(0)

机器学习基础--决策树

决策树是很基础很经典的一个分类方法,基本上很多工业中很使用且常用的算法基础都是决策树,比如boost,GBDT,CART(分类回归树),我们后需会慢慢分析,决策时定义如下: 决策树:决策树模型是一种描述对实例进行分类的树形结构,其算法思想是分治法,由节点(node)和有向边组成,节点分两种类型,内部节点和叶子节点,内部节点标示一个特征或者树形,叶子节点表示一个类。 比如下面就是一个根据西瓜一些特...
阅读(99) 评论(0)

逻辑回归

继续机器学习系列基础算法,逻辑回归定义问题首先我们依然是定义问题,逻辑回归是解决分类问题,而且是基本的二分类问题,比如经典的垃圾邮件判定,根据疾病的特征预测死亡率。比如现在我给出这样一个问题,基于邮件的两个特征值去判定邮件是不是为垃圾邮件,根据数据画出的分布图如下。蓝色表示不是垃圾邮件,红色表示是垃圾邮件,我们要做的是学习去拟合一个分类决策边界,然后就能根据这个模型预测。 逻辑回归分布设X是连续的...
阅读(530) 评论(0)

线性回归最小二乘法和梯度下降法

问题描述首先我们定义问题,线性回归要解决的问题就是根据给出的数据学习出一个线性模型。 例如我们最常说的身高和体重的关系,以及房屋面积和房价的关系,这里给出一个瑞典汽车保险数据集 数据集 可以直接复制出来用 两列分别表示 索赔要求数量 对所有索赔的总赔付,以千瑞典克朗计 数据前五行108 392,5 19 46,2 13 15,7 124 422,2 40 119,4我们按照这个数据...
阅读(974) 评论(0)

Octave语法学习记录

数组和指针的区别 数组直接从存储区获取,而指针需要先获取指针直线地址,然后去地址通过偏移量拿实际值,相当于指针保存数据的地址 数组存储栈区,而指针存储在堆区是的 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列图和流程图 离线写博客 导入导出Ma...
阅读(1041) 评论(0)

kafka+logstash搭建分布式消息订阅系统

首先安装kafka和它的依赖zookeeper我安装的zookeeper版本是zookeeper-3.4.8.tar.gz 直接解压到安装目录下,然后修改/conf/zoo.cfg dataDir修改到自己想要的目录即可。默认端口是2181,一般不需要修改 注意其依赖java,所以如果如果没有装jdk的话需要装一下。 启动命令:bin/zkServer.sh startkafka同样下载解...
阅读(1081) 评论(0)

进程与线程IPC-信号量(实现生产者消费者&哲学家就餐)

进程&线程IPC我们知道操作系统中的很重要的一个是线程&进程,而进程通信通常解决方案也适用于线程,反过来也一样,到线程中就是临界区的互斥访问,因此以下我们只讨论线程。方法 忙等 (优先级反转问题导致死锁) 禁止中断 权利交给用户线程不明智 对于多CPU 无法处理 锁 读取与加锁不一致导致两个进程同时访问 自旋锁 相互制约 Peterson解法 TSL指令 阻塞等 sleep() & wa...
阅读(583) 评论(0)

面试题目记录

今天面了一个小公司,记录一下面试题目: 收获:多去接触实现一些底层的东西。 一面(一个半小时) 1:写一个内存拷贝的函数(没写出来) 2:求一个字符串的最长回文(回答有加分,分析了动规和贪心区别) 3:tcp协议断开状态转换(加分TIME_WAIT) 4:写一个二叉树,递归和非递归版(非递归用了个栈实现,其实就是递归的编译器版本,不知道是不是面试官SB了过了)二面(半小时)...
阅读(633) 评论(0)

cmder使用记录

看android有个很好用的工具cmder。推荐一些 设置dos下的编码: 命令:chcp 65001 补充部分字符编码对应代码: 65001——UTF-8 936——简体中文 950——繁体中文 437——美国/加拿大英语 932——日文 949——韩文 866——俄文  Cmder是一款Windows环境下非常简洁美...
阅读(10451) 评论(0)

操作系统-进程通信

进程通信中的难点是对临界区的互斥访问,下面我们来看一下、忙等待的互斥 锁变量 其实我们很容易想到的解决方案就是加锁, int lock,cnt; void solve_fork() { while(lock==1); lock = 1; cnt++; printf("%d 进入了临界区\n",getpid()); lock = 0; } 同时我们也很...
阅读(984) 评论(0)

【CCPC】hdu 5547 Sudoku【dfs】

题目:hdu 5547 Sudoku题意:给你一个4*4的数独,让你填其中未知的数 坑点 1:虽然斜线不用满足每个格子唯一,但是4*4的格子分成4个,每个2*2的格子必须满足数独 2:答案不唯一的输出所有的情况,即暴力搜索的时候要回溯。ac代码:#include #include #include #include <algori...
阅读(1014) 评论(0)
329条 共22页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:923514次
    • 积分:11207
    • 等级:
    • 排名:第1536名
    • 原创:323篇
    • 转载:3篇
    • 译文:3篇
    • 评论:178条
    最新评论