Q:有一个很大很大的输入流,大到没有存储器可以将其存储下来,而且只输入一次,如何从这个输入流中等概率随机取得m个记录。
A:开辟一块容纳m个记录的内存区域,对于数据流的第n个记录,以m/n的概率将其留下(前m个先存入内存中,从第m+1个开始),随机替换m个已存在的记录中的一个,这样可以保证每个记录的最终被选取的概率都是相等的。
面试官视角:
这个题目除了需要给出正确解答以外,还需要证明你的解答。考察的是对概率随机问题的掌握情况和归纳法的运用。下面给出一个简单的证明:
设数据流中已经有n个记录流过,在内存中的m个记录中,假设都是等概率取得的,每个数命中的概率都为:m/n。对于第n+1个记录,以m/(n+1)的概率选中,
1)如果没有选中,则内存中的m个记录均被留下来,每个数【原来m个】留下来其概率为:m/n * (1-m/(n+1)) = m(n+1-m)/(n(n+1));
2)如果选中,新留下来的数概率自然是m/(n+1),而原来内存中的m个数中留下来m-1个数,每个数【原来m个】留下来的概率是:m/n*((m-1)/(n+1)) = m(m-1)/(n(n+1))。两种情况下概率之和为m(m-1)n(n+1)+m(n+1-m)n(n+1)=m/(n+1),即为原来被选中数,继续被选中的概率。由此我们不难得出,内存中每个数被选中概率一直都是m/n。
转 http://www.ninechapter.com/%E4%B9%9D%E7%AB%A0%E7%AE%97%E6%B3%95%E9%9D%A2%E8%AF%95%E9%A2%9817-%E4%BB%8E%E8%BE%93%E5%85%A5%E6%B5%81%E4%B8%AD%E9%9A%8F%E6%9C%BA%E5%8F%96%E8%AE%B0%E5%BD%95/