(update 2012.12.28 关于本项目下载及运行的常见问题 FAQ见 newsgroup18828文本分类器、文本聚类器、关联分析频繁模式挖掘算法的Java实现工程下载及运行FAQ )
本文要点如下:
对newsgroup文档集进行预处理,按照DF法及SVD分解法抽取特征词,实现降维
实现了K-Means,MBSAS,DBSCAN三种聚类算法用weka工具进行newsgroup文档聚类
计算各种算法聚类的熵,进行算法评价
1、newsgroup文档集预处理
newsgroup是常用的数据挖掘实验数据。文本预处理主要包括单词分片、去除标点等无关符号、去停用词等等,相关详细介绍见我的另一篇博文数据挖掘-基于贝叶斯算法及KNN算法的newsgroup18828文本分类器的JAVA实现(上),此处只给出文本预处理和向量化不同的部分代码。
文本预处理类DataPreProcess.java
package com.pku.yangliu;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
/**
* Newsgroups文档集预处理类
*/
public class DataPreProcess {
/**输入文件调用处理数据函数
* @param strDir newsgroup文件目录的绝对路径
* @throws IOException
*/
public void doProcess(String strDir) throws IOException{
File fileDir = new File(strDir);
if(!fileDir.exists()){
System.out.println("File not exist:" + strDir);
return;
}
String subStrDir = strDir.substring(strDir.lastIndexOf('/'));
String dirTarget = strDir + "/../../processedSample_includeNotSpecial"+subStrDir;
File fileTarget = new File(dirTarget);
if(!fileTarget.exists()){//注意processedSample需要先建立目录建出来,否则会报错,因为母目录不存在
fileTarget.mkdir();
}
File[] srcFiles = fileDir.listFiles();
String[] stemFileNames = new String[srcFiles.length];
for(int i = 0; i < srcFiles.length; i++){
String fileFullName = srcFiles[i].getCanonicalPath();
String fileShortName = srcFiles[i].getName();
if(!new File(fileFullName).isDirectory()){//确认子文件名不是目录如果是可以再次递归调用
System.out.println("Begin preprocess:"+fileFullName);
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append(dirTarget + "/" + fileShortName);
createProcessFile(fileFullName, stringBuilder.toString());
stemFileNames[i] = stringBuilder.toString();
}
else {
fileFullName = fileFullName.replace("\\","/");
doProcess(fileFullName);
}
}
//下面调用stem算法
if(stemFileNames.length > 0 && stemFileNames[0] != null){
Stemmer.porterMain(stemFileNames);
}
}
/**进行文本预处理生成目标文件
* @param srcDir 源文件文件目录的绝对路径
* @param targetDir 生成的目标文件的绝对路径
* @throws IOException
*/
private static void createProcessFile(String srcDir, String targetDir) throws IOException {
// TODO Auto-generated method stub
FileReader srcFileReader = new FileReader(srcDir);
FileReader stopWordsReader = new FileReader("F:/DataMiningSample/stopwords.txt");
FileWriter targetFileWriter = new FileWriter(targetDir);
BufferedReader srcFileBR = new BufferedReader(srcFileReader);//装饰模式
BufferedReader stopWordsBR = new BufferedReader(stopWordsReader);
String line, resLine, stopWordsLine;
//用stopWordsBR够着停用词的ArrayList容器
ArrayList<String> stopWordsArray = new ArrayList<String>();
while((stopWordsLine = stopWordsBR.readLine()) != null){
if(!stopWordsLine.isEmpty()){
stopWordsArray.add(stopWordsLine);
}
}
while((line = srcFileBR.readLine()) != null){
resLine = lineProcess(line,stopWordsArray);
if(!resLine.isEmpty()){
//按行写,一行写一个单词
String[] tempStr = resLine.split(" ");//\s
for(int i = 0; i < tempStr.length; i++){
if(!tempStr[i].isEmpty()){
targetFileWriter.append(tempStr[i]+"\n");
}
}
}
}
targetFileWriter.flush();
targetFileWriter.close();
srcFileReader.close();
stopWordsReader.close();
srcFileBR.close();
stopWordsBR.close();
}
/**对每行字符串进行处理,主要是词法分析、去停用词和stemming
* @param line 待处理的一行字符串
* @param ArrayList<String> 停用词数组
* @return String 处理好的一行字符串,是由处理好的单词重新生成,以空格为分隔符
* @throws IOException
*/
private static String lineProcess(String line, ArrayList<String> stopWordsArray) throws IOException {
// TODO Auto-generated method stub
//step1 英文词法分析,去除数字、连字符、标点符号、特殊字符,所有大写字母转换成小写,可以考虑用正则表达式
String res[] = line.split("[^a-zA-Z]");
//这里要小心,防止把有单词中间有数字和连字符的单词 截断了,但是截断也没事
String resString = new String();
//step2去停用词
//step3stemming,返回后一起做
for(int i = 0; i < res.length; i++){
if(!res[i].isEmpty() && !stopWordsArray.contains(res[i].toLowerCase())){
resString += " " + res[i].toLowerCase() + " ";
}
}
return resString;
}
/**
* @param args
* @throws IOException
*/
public void BPPMain(String[] args) throws IOException {
// TODO Auto-generated method stub
DataPreProcess dataPrePro = new DataPreProcess();
dataPrePro.doProcess("F:/DataMiningSample/orginSample");
}
}
文本向量化表示主要基于TF-IDF值
ComputeWordsVector.java
package com.pku.yangliu;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.HashSet;
import java.util.SortedMap;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeMap;
import java.util.Iterator;
import java.util.TreeSet;
/**计算文档的属性向量,将所有文档向量化
*
*/
public class ComputeWordsVector {
/**计算文档的TF-IDF属性向量,返回Map<文件名,Map<特征词,TF-IDF值>>
* @param testSampleDir 处理好的聚类样本测试样例集合
* @return Map<String,Map<String,Double>> 所有测试样例的属性向量构成的map
* @throws IOException
*/
public Map