解决extjs4.1在IE和FF下面字体太上问题,以及按钮的字体是斜体的问题,在extj-all.css后加

.x-panel-header-text-default { color: #04408C; font-family: 微软雅黑,Tahoma,arial,verdana,sans-serif; font-size: 12px; font-weight: bold;}.x-column-header { border-style: none solid none none; font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif; text-shadow: 0 1px 0 rgba(255, 255, 255, 0.3);}.x-body { color: black; font-family: 微软雅黑,tahoma,arial,verdana,sans-serif; font-size: 12px;}.x-grid-row .x-grid-cell { border-style: solid; font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif;}.x-mask-msg div { background-color: #EEEEEE; background-image: url("../../resources/themes/images/default/grid/loading.gif"); background-position: 5px center; background-repeat: no-repeat; border: 1px solid #A3BAD9; color: #222222; cursor: wait; font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif; padding: 5px 10px 5px 25px;}.x-btn-default-toolbar-small { background-color: transparent; border-radius: 3px 3px 3px 3px; border-style: solid; border-width: 1px; padding: 2px;}.x-btn-default-toolbar-small .x-btn-inner { background-repeat: no-repeat; color: #333333; font-family: 微软雅黑,tahoma,arial,verdana,sans-serif; font-size: 12px; font-weight: normal; padding: 0 4px;}.x-btn-default-toolbar-small-icon-text-left .x-btn-inner { height: 16px; line-height: 16px; padding-left: 20px;}.x-form-item { font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif;}.x-btn-default-small .x-btn-inner { background-repeat: no-repeat; color: #333333; font-family: 微软雅黑,tahoma,arial,verdana,sans-serif; font-size: 12px; font-weight: normal; padding: 0 4px;}.x-form-field, .x-form-display-field { color: black; float: left; x-btn-center margin: 0;}table.x-datepicker-inner th { border-collapse: separate; color: #233D6D; cursor: default; font: 11px 微软雅黑,tahoma,arial,verdana,sans-serif; text-align: right;}.x-window-header-text-default { color: #04468C; font-family: 微软雅黑,tahoma,arial,verdana,sans-serif; font-size: 12px; font-weight: bold; line-height: 16px;}.x-toolbar .x-toolbar-text { color: #4C4C4C !important; font-family: 微软雅黑,tahoma,arial,verdana,sans-serif; font-size: 12px; font-weight: normal; line-height: 16px; margin-left: 4px; margin-right: 6px; white-space: nowrap;}.x-panel-header-text-default-framed { color: #04408C; font-family: 微软雅黑,tahoma,arial,verdana,sans-serif; font-size: 12px; font-weight: bold;}.x-tab button { color: #416DA3; font-size: 12px; font-weight: bold;}.x-tab-center{font-family: 微软雅黑}.x-btn-center{font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif;}.x-btn-group-header-text-default-framed { color: #3E6AAA; font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif;}.x-html-editor-tb .x-font-select { font-size: 12px;}.x-fieldset-header { color: #15428B; font: 12px/16px 微软雅黑,tahoma,arial,verdana,sans-serif; padding: 0 3px; font-weight: bold; }.x-form-field, .x-form-display-field { color: black; float: left; font: 12px 微软雅黑,tahoma,arial,verdana,sans-serif; margin: 0;}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值