关闭
当前搜索:

Dynamic Cloud Instance Acquisition via IaaS Cloud Brokerage 文章阅读笔记

1、文章贡献:          在用户和云平台中间,文章提出了一个中间商的概念,一个中间商服务于大量用户,聚集所有用户需求后向云平台购买实例,包括按需实例和预留实例,也同样需要进行决策,面临什么时候预留,预留几个实例的问题。         提出中间商的概念有三个原因:  能够更好地利用预留实例,单个用户可能会有峰值和零星需求,不能好好利用预留实例,而中间商因为下面有很多用户。因...
阅读(31) 评论(0)

计算机相关会议等级

Acronym Standard Name Rank AAAI National Conference of the American Association for Artificial Intelligence A+ AAMAS International Conference on Autonomous Agents and Mult...
阅读(223) 评论(0)

Google Cloud Platform 学习笔记(二)

1、谷歌云不同存储方式分析:        谷歌云提出了多区域存储、区域存储、nearline、coldline存储方式,不同存储方式价格策略不同,适宜数据也不相同,下图是一个汇总:...
阅读(200) 评论(0)

Google Cloud Platform 学习笔记

1、Amazon EC2 预留实例后续费用计算问题:         预留实例收取预付费用后,在预留期内如何计算后续费用?是只有在用实例的时候收费,还是用与不用都收费?是按月来看实例用没用来收费,还是整个预留期内无论用不用都收费?今天又看了一下官网上面的介绍,感觉最后一种的可能性最大,官网描述如下:https://amazonaws-china.com/ec2/pricing/reserved-...
阅读(169) 评论(0)

云计算中的术语

A Apache thrift:由Facebook开发的一种高效的、支持多种编程语言的远程服务调用的框架。 API:全名Application Programming Interface,即应用程序接口,提供应用程序与开发人员基于某软件或硬件可访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。 Amazon Web Services (AWS):亚马逊(Amazon)公司的云计...
阅读(276) 评论(0)

clusterdata-2011-2 谷歌集群数据分析(三)

1、一个作业在多次调度时,每一次分配的Job ID是不同的,如下图,Job name为 “”VRH1Jd5MGmAfJ9/rKwhsafRxNYi77rYxgsgb1q2OJw=” 的作业在提交(0)完成(4)过程中的Job ID(第3个属性)都是不同的。 其中Job ID 为6251675381的作业执行情况: Job ID 为6251752722的作业执行情况:...
阅读(231) 评论(0)

clusterdata-2011-2 谷歌集群数据分析(二)--task_usage

先对 task_usage 即任务资源使用表进行一个分析学习。 task_usage 表共有20列,代表20个属性,具体每一列代表含义即属性名称如下:                        1、每个测量周期是5分钟(300秒),这也能够佐证时间单位是微秒,因为表中每一行开始时间和结束时间数值相差为300000000。 2、第四个属性即 task index 属性是指将一个J...
阅读(169) 评论(0)

clusterdata-2011-2 谷歌集群数据分析(一)

谷歌集群数据主要包括六个文件,总大小为41个G,先就每种表的属性名称及含义做一个统计。...
阅读(145) 评论(6)

Dynamic Right-Sizing for Power-Proportional Data Centers文章阅读笔记

摘要重点: 数据中心在用户需求较少,负荷较低时还维持着较高的资源提供能力,造成了大量能源浪费,文章提出一种在线算法,来适时关闭部分服务器,来达到节省能源的目的。摘要中还提到离线最优算法从反向时间来看是一种简单结构,这里没有特别懂。最后提到 traditional approach of receding horizon control,似乎是一个经典算法。 这篇文章和卖出预留实例有点类似,资源...
阅读(76) 评论(0)

Online algorithms for uploading deferrable big data to the cloud文章阅读笔记

问题挑战: 用户和云平台之间的数据传输过程中,除了计算成本控制(云平台中心的费用计算),通信成本控制(带宽费用)也是一个很大的挑战,本文就带宽费用(传输费用)最小化问题做出了研究。已存在的研究都是假设用户生成的数据必须立即上传到云端,没有任何延迟,这种解决办法只能限制在流量比较平滑这种情况。基于延迟传输的传输费用最小化在线算法还没有出现(有一个例外),难度较大。 一个例外:Simple Smo...
阅读(99) 评论(0)

9.17论文阅读笔记

一、Present or future: Optimal pricing for spot instances 1、问题挑战:         如何给竞价型实例定价,当前定价过高,可获得当前较高收益,但会导致将来实例价格过低,从而使将来的收益过低。目标是在保证用户服务质量的前提下,合理定价获取整体较高收益。 2、两个模型: 1、In the basic model, assuming th...
阅读(120) 评论(0)

ubuntu下配置安装PyQt4

先安装SIP:http://www.riverbankcomputing.com/software/sip/download 找到下载后保存的文件夹,右键打开终端,解压:tar zxf 文件名.tar.gz 定位到解压出来的文件中:cd ./解压后的文件名 键入以下三条命令: sudo python configure.py make sudo make install 如果make...
阅读(272) 评论(0)

ubuntu下vim配置:自动缩进、自动补齐括号

终端键入sudo vim /etc/vim/vimrc进入配置文件,在末尾添加 set autorndent 和 set cindent set autoindent 其实是自动对齐,它适合 就是自动缩进的意思,当你在输入状态用回车键插入一个新行,或者在 normal 状态用 o 或者 O 插入一个新行时,autoindent 会自动地将当前行的缩进拷贝到新行,也就是"自动对齐”,当然了,如果...
阅读(986) 评论(0)

Moving Big Data to The Cloud: An Online Cost-Minimizing Approach文章阅读笔记

问题挑战:如何将大量数据上传至云中。传统硬件驱动传输方式效率低且不稳定,通过对MapReduce框架的学习,文章提出了两种在线算法:OLM、RFHC。...
阅读(156) 评论(0)

present or future: optimal pricing for spot instances文章阅读笔记

问题挑战:如何给竞价型实例定价,当前定价过高,可获得当前较高收益,但会导致将来实例价格过低,从而使将来的收益过低。目标是在保证用户服务质量的前提下,合理定价获取整体较高收益。...
阅读(116) 评论(0)
28条 共2页1 2 下一页 尾页
    个人资料
    • 访问:13317次
    • 积分:420
    • 等级:
    • 排名:千里之外
    • 原创:20篇
    • 转载:5篇
    • 译文:3篇
    • 评论:33条
    文章分类
    最新评论