《精通数据仓库星型模式》

翻译 2007年09月30日 21:11:00
英文名称:Mastering Data Warehouse Aggregates Solutions for Star Schema Performance
目录如下:
Chapter 1 Fundamentals of Aggregates
Chapter 2 Choosing Aggregates
Chapter 3 Designing Aggregates
Chapter 4 Using Aggregates
Chapter 5 ETL Part 1: Incorporating Aggregates
Chapter 6 ETL Part 2: Loading Aggregates
Chapter 7 Aggregates and Your Project
Chapter 8 Advanced Aggregate Design
Chapter 9 Related Topics
        Ralph Kimball 为该书写了序言,本人计划在未来的时间内,将本书中比较重要的内容翻译为中文。
    在提高数据仓库性能的战斗中,没有武器比聚集表更强大和有效率。精心计划的聚集对数据仓库的整体吞吐量,有不同寻常的影响。当您确保数据库是正确的设计,配置和调优,之后为了解决数据仓库性能问题,采取的所有措施中首先应该选择聚集。然而,许多企业继续忽视聚集,而是提升硬件产品,采用专门的数据库,或执行复杂的缓存架构。这些解决方案的实施需要高成本,往往还需要专门的维护技能。本书旨在填补知识上的差距,避免这种昂贵而危险的方法。
    在本文中,你会发现有些工具和技术可以带来惊人的性能提升。本书开发了一套最佳查询,设计,建设和使用聚集表的方法。它探讨如何将这些技巧纳入项目,研究先进的设计考量,并包括聚集如何影响数据仓库的生命周期。

 

如果您对此有建议,请与我联系:jiaoyouzhang@gmail.com

相关文章推荐

数据仓库的逻辑建模之星型模式

逻辑建模能直接反映出决策者管理者的需求, 同时对系统的物理实施有着重要的指导作用,是数据仓库实施中的重要一环, 目前较常用的包含有星型模式。 星型模式是一种多维的数据关系,它由一个事...

数据仓库之星型结构和雪花型结构

在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型还是雪花型模型进行组织。 当所有维表都...

数据仓库之星型结构和雪花型结构

在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型还是雪花型模型进行组织。 当所有维表都...

数据仓库之星型结构和雪花型结构

在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型还是雪花型模型进行组织。 当所有维表都直接...

星型数据仓库olap工具kylin介绍

星型数据仓库olap工具kylin介绍   数据仓库是目前企业级BI分析的重要平台,尤其在互联网公司,每天都会产生数以百G的日志,如何从这些日志中发现数据的规律很重要. 数据仓库是数据分析的重要工...

构建星型数据仓库五步法

说明:本文截取了原文中的一个片段,原片段名称为“构建企业级数据仓库五步法”,但我认为有些文不对题,或许改成“构建星型数据仓库五步法”更合适。 1.确定主题 即确定数据分析或前端展现的主题。例如:我们希...

数据仓库的架构主要有星型和雪花型两种方式

架构模式的选择 数据仓库的架构主要有星型和雪花型两种方式,下面从多个角度来比较一下这两种模式的利弊。 从查询性能角度来看,在OLTP-DW环节,由于雪花型要做多个表联接,性能会低于星型架构...

数据仓库之星型结构和雪花型结构

数据仓库之星型结构和雪花型结构 在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星...

数据仓库多维数据模型-星型模型 和 雪花模型

(星形模式是一种多维的数据关系,它由一个事实表(Fact Table)和一组维表(Dimension Table)组成。每个维表都有一个维作为主键,所有这些维的主键组合成事实表的主键。事实表的非主键属...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)