业务系统和数据仓库

翻译 2007年09月30日 21:32:00

业务系统和数据仓库

数据仓库和业务系统的目的从根本上是不同的。业务系统支持业务处理的执行,同时数据仓库支持处理的评估。他们的使用目的不同,因此需要不同的原理指导不同的设计。维度建模的原理非常适合数据仓库系统的需求。

业务系统

业务系统

业务系统直接支持业务处理的执行。通过捕获交易事务重要事件的细节,建立活动记录。例如,一个销售系统捕获订单、运输和回款信息;一个人力资源系统捕获员工的雇佣和提升信息;一个会计系统捕获财务管理的资产和负债信息。捕获这些活动的细节通常是业务系统的重点。

为了方便业务处理的执行,一个业务系统必须能够与多种数据库交互,包括插入、更新和删除。业务系统经常称为交易系统。这些交易系统的特点是原子操作--一个具体的命令序列。这些交互具有可预测性。例如,一个订单处理系统必须提供产品、客户、发票和包装的列表;并且能跟踪订单状态。在关系数据库中实施,优化数据库设计的模式是广泛采用的方法,使之符合第三范式。设计支持高性能的插入、更新和删除数据,并保持原子性和一致性。

    因为重点集中于处理的执行,交易系统在事物变化是进行更新操作,当交易结束时使数据归档。例如,一旦客户变了新地址,旧地址就不需要了。一年后,销售订单已经传递到财务报告,那么就不需要在交易系统维护该订单了。

 

数据仓库系统

交易系统集中于业务流程的执行,而数据仓库系统则集中于业务的评估。这个月的订单数量相比上个月的趋势如何?这个季度的销售额目标是多少?市场营销活动对销售有什么影响?谁是我们最好的客户?这些问题涉及到评估整个订单的流程,而不是某一个单独的订单。

数据仓库完全通过查询数据与用户交互;不会新建和修改信息。这些交互涉及大量的交易,而不是某个交易。有很多专业的预测问题,还有随时间变化的趋势。在数据仓库系统中,历史数据将会保留很久。交易系统与数据仓库系统的区别见图1.1

维度建模的原理满足了数据仓库系统的需求。相对于单个记录的交易系统,星型设计模式是查询大数据量优秀方案。它支持历史数据的维护,甚至交易系统修改和删除的信息。作为模型的处理标准,多维模式能够解决各种各样的问题。

 


 

 

维度建模的基本概念及过程

维度建模的基本概念及过程 摘要:本文首先介绍维度模型中的维度表和事实表这2个基本构成要素的基础知识;其次,介绍设计维度模型的4个基本步骤;再次,围绕某银行为实现业务价值链数据集成的需要,介绍多维体系...
  • web_go_run
  • web_go_run
  • 2015年09月13日 16:03
  • 1604

维度建模的优缺点

维度建模就是:按照事实表,维度表来构建数据仓库,数据集市。这种方法的最被人广泛知晓的名字就是星型模式(Star-schema)、雪花模型(Snow-schema)。 优点: a) 维度建模是可...
  • beijicy
  • beijicy
  • 2015年08月06日 15:23
  • 876

浅谈数据仓库建设中的数据建模方法

周三保(zhousb@cn.ibm.com) IBM 软件部信息技术专家. 简介: 本文的主要内容不是介绍现有的比较流行的主要行业的一些数据模型,而是将笔者在数据仓库建设项目中的一些经验,在这里分享...
  • nisjlvhudy
  • nisjlvhudy
  • 2012年08月22日 15:28
  • 77599

透过CAT,来看分布式实时监控系统的设计与实现

转载自:http://mp.weixin.qq.com/s?__biz=MzA5Nzc4OTA1Mw==&mid=410426909&idx=1&sn=851bf383a5c82f6c9eb5fa0f...
  • rdstwww
  • rdstwww
  • 2016年05月09日 01:20
  • 1431

数据仓库工作总结(觉得有点意思)

1.   概述 本文作为我这些年实施数据仓库的总结,如有错误,请各位同仁指正。 文档条理不是很清楚,而且也有很多口水话,我不想搞成一个真正的官方文档,所以很随意,符合我的性格。很多问题我只...
  • jiangshouzhuang
  • jiangshouzhuang
  • 2015年06月21日 16:48
  • 1661

数据仓库专题(7)-维度建模11大基本原则

一、前言          数据仓库存储逻辑模型设计,需要遵循一定的设计原则。遵循这些原则进行维度建模可以保证数据粒度合理,模型灵活,能够适应未来的信息资源,违反这些原则你将会把用户弄糊涂,并且会遇...
  • zhangziliang09
  • zhangziliang09
  • 2015年05月06日 18:55
  • 1482

干货:解码OneData,阿里的数仓之路

摘要: 据IDC报告,预计到2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量是2013年的10倍。正在“爆炸式”增长的数据的潜在巨大价值正在被发掘,它有可能成为商业世界的“新能源”...
  • dxl342
  • dxl342
  • 2017年04月26日 10:53
  • 952

干货:解码OneData,阿里的数仓之路。

免费开通大数据服务:https://www.aliyun.com/product/odps 据IDC报告,预计到2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量是2013年的1...
  • bengsa2291
  • bengsa2291
  • 2017年03月15日 11:07
  • 921

漫谈数据仓库之维度建模

0x00 前言 下面的内容,是笔者在学习和工作中的一些总结,其中概念性的内容大多来自书中,实践性的内容大多来自自己的工作和个人理解。由于资历尚浅,难免会有很多错误,望批评指正! 概述数据仓库包含的...
  • zhaodedong
  • zhaodedong
  • 2017年01月07日 14:57
  • 3205

数据仓库维度建模举例

设计数据仓库常用到的模型是维度模型。例如决策者想知道去年一年里哪个产品在哪个地区销售得最好,那么决策者想要得到的信息有3个:时间、产品和地区,这3个信息称为“维度”。维度模型的作用是将决策者所要分析的...
  • chenmeng2192089
  • chenmeng2192089
  • 2013年11月19日 16:03
  • 1900
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:业务系统和数据仓库
举报原因:
原因补充:

(最多只允许输入30个字)