业务系统和数据仓库

翻译 2007年09月30日 21:32:00

业务系统和数据仓库

数据仓库和业务系统的目的从根本上是不同的。业务系统支持业务处理的执行,同时数据仓库支持处理的评估。他们的使用目的不同,因此需要不同的原理指导不同的设计。维度建模的原理非常适合数据仓库系统的需求。

业务系统

业务系统

业务系统直接支持业务处理的执行。通过捕获交易事务重要事件的细节,建立活动记录。例如,一个销售系统捕获订单、运输和回款信息;一个人力资源系统捕获员工的雇佣和提升信息;一个会计系统捕获财务管理的资产和负债信息。捕获这些活动的细节通常是业务系统的重点。

为了方便业务处理的执行,一个业务系统必须能够与多种数据库交互,包括插入、更新和删除。业务系统经常称为交易系统。这些交易系统的特点是原子操作--一个具体的命令序列。这些交互具有可预测性。例如,一个订单处理系统必须提供产品、客户、发票和包装的列表;并且能跟踪订单状态。在关系数据库中实施,优化数据库设计的模式是广泛采用的方法,使之符合第三范式。设计支持高性能的插入、更新和删除数据,并保持原子性和一致性。

    因为重点集中于处理的执行,交易系统在事物变化是进行更新操作,当交易结束时使数据归档。例如,一旦客户变了新地址,旧地址就不需要了。一年后,销售订单已经传递到财务报告,那么就不需要在交易系统维护该订单了。

 

数据仓库系统

交易系统集中于业务流程的执行,而数据仓库系统则集中于业务的评估。这个月的订单数量相比上个月的趋势如何?这个季度的销售额目标是多少?市场营销活动对销售有什么影响?谁是我们最好的客户?这些问题涉及到评估整个订单的流程,而不是某一个单独的订单。

数据仓库完全通过查询数据与用户交互;不会新建和修改信息。这些交互涉及大量的交易,而不是某个交易。有很多专业的预测问题,还有随时间变化的趋势。在数据仓库系统中,历史数据将会保留很久。交易系统与数据仓库系统的区别见图1.1

维度建模的原理满足了数据仓库系统的需求。相对于单个记录的交易系统,星型设计模式是查询大数据量优秀方案。它支持历史数据的维护,甚至交易系统修改和删除的信息。作为模型的处理标准,多维模式能够解决各种各样的问题。

 


 

 

相关文章推荐

系统设计之时间维度[数据仓库]

http://www.cnblogs.com/tintown/archive/2005/08/29/225606.html 在系统设计中,我们一般会考虑时间,但我们很少会正式意义上去分析时间,我现在...

漫谈大数据仓库与挖掘系统--层次、维度与主题

2013-10-09 阿里技术嘉年华     上集回顾:什么是大数据?【回复071查看】       在上一章节的末尾,我们谈到,这个系列的文章,最终会以我国公安机关拥有的公民信息、加...

基于数据仓库星形模式的广东省高速公路一张网资金结算情况分析系统

星形模式是基于关系数据库的数据仓库中的一个著名概念,由于星形连接模式的设计思想能够满足人们从不同观察角度(维)分析数据的需求,所以在基于关系数据库的数据仓库的设计中广泛地使用了星形模式。本文主要介绍《...

数据仓库-国际结算系统

国际结算(International Settlement) 根据字面意思:两个不同国家的当事人,当事人可以是个人、单位、企业、政府,由于商品贸易、服务供应、资金调拨、国际借贷需要通过银行办理两国之间...

【财政决策支持系统DSS】财政支出OLAP分析模型参考【财政数据仓库DW】

财政支出OLAP分析模型参考。 目的:从各个角度分析财政支出的状况,作出科学的决策

漫谈大数据仓库与挖掘系统(二):层次、维度与主题

本文其它章节: 漫谈大数据仓库与挖掘系统(一):大数据的价值 漫谈大数据仓库与挖掘系统(三):ETL的开始——数据的传输和同步 在上一章节的末尾,我们谈到,这个系列的文章,最终会以我...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)